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Abstract 

 
The Aesthetics of Color Combinations 

  
by 
  

Karen B. Schloss 
 

Doctor of Philosophy in Psychology 
 

University of California, Berkeley  
 

Professor Stephen E. Palmer, Chair  
 
 

The experiments described here were aimed at characterizing people’s aesthetic 
responses to color pairs, both in terms of which colors people prefer in combination and how the 
spatial organization of the component colors influences pair preference. Previous studies of 
preference for and harmony of color combinations have produced conflicting results. For 
example, some claim that harmony increases with hue similarity, whereas others claim that it 
decreases.  In the first set of experiments, we argue that such conflicting results are resolved by 
distinguishing among three types of judgments about color pairs: (a) preference for the pair as a 
whole, (b) harmony of the pair as a whole, and (c) preference for its figural color when viewed 
against its colored background.  Empirical support for this distinction shows that pair preference 
and harmony both increase as hue similarity increases, but preference relies more strongly on 
component color preference and lightness contrast. Although pairs with highly contrastive hues 
are generally judged to be neither preferable nor harmonious, figural color preference ratings 
increase as hue contrast with the background increases. The present results thus refine and clarify 
some of the best-known and most contentious claims of color theorists.  In the second set of 
experiments, we investigated how spatial organization influences color-pair preference 
asymmetries: differential preference for one color pair over another when the pairs contain the 
same colors in opposite spatial configurations. We found robust preference asymmetries, in 
which participants strongly preferred pairs with yellower, lighter figures on bluer, darker 
grounds. We also investigated which spatial factors influence these preference asymmetries. 
Relative area of the two component regions is clearly important, and relative surface-based area 
(i.e., after amodal figure-ground completion) is more influential than relative image-based area. 
Surroundedness is not required, because yellowness-blueness effects were comparable for figure-
ground pairs in which the figure was surrounded by the ground and for mosaic arrangements in 
which the regions were adjacent and separated by a gap). Lightness-darkness effects, however, 
were in the opposite direction for figure-ground versus mosaic organizations: people prefer 
figure-ground organizations in which the smaller regions are lighter, but prefer mosaic 
organizations in which the smaller regions are darker. We provide possible phenomenological 
and ecological explanations for the reported results.  

 



!

  i 
!

Table of Contents 

Title Page 

Approval Page 

Copyright 

Abstract…………………………………………………………………………………… 1 

Table of Contents………………………….………………………….…………..………... i 

List of Figures………………………….………………………….……………………….. iii  

List of Tables………………………….………………………….…………………….……v 

Acknowledgments………………………………………………………..………………… vi 

1. Introduction………………………….………………………….………………......…… 1 

2. Dissociating Preference, Harmony, and Similarity of Color Pairs….…………………... 4 

 2.1. Introduction to the Aesthetics of Color Pairs………………………………….. 4 

  2.1.1. A New Framework for the Aesthetics of Color Pairs……………….. 4 

  2.1.2. Art Theorists on Aesthetics of Color Combinations ..………………. 5 

  2.1.3. Empirical Work on Aesthetics of Color Pairs…..…..…..................... 5  

2.1.4. Evidence for a Distinction between Preference and Harmony............ 6 

2.1.5. Empirical Work on Figural Color Preference...................…………... 7 

2.2. Aim of Experiments 1-4: Dissociating Pair Preference, Harmony, Similarity,  

 and Figural Color Preference……………..…………………………………... 7 

 2.3. Experiment 1:Preference for Color Pairs…….…………………......……..…... 7 

  2.3.1. Methods……………………..………………….………………..….. 8 

  2.3.2. Results and Discussion……………..…………………….…………. 8 

2.4. Experiment 2: Color Harmony and its Relation to Pair Preference…………… 15 

  2.4.1. Methods…………………………..…………….…………………… 15 

  2.4.2. Results and Discussion……………….....…………………………..  16 



!

  ii 
!

 2.5. Experiment 3: Color Similarity and its relation to Preference and Harmony…. 27 

  2.5.1. Methods…………………..…………………….………….………... 28 

  2.5.2. Results and Discussion…..…………………….……………………. 28 

 2.6. Experiment 4: Preference for Figural Colors on Background Colors…………. 32 

  2.6.1. Methods………………………….………………………………….. 33 

  2.6.2. Results and Discussion…………………….………………….…….. 34 

 2.7. General Discussion of Experiments 1-4………………….…………………… 39 

3. The Role of Spatial Organization in Preference for Color Pairs………………………... 43 

 3.1. Introduction to Spatial Aspects of Color Pair Preference……………………... 44 

3.1.1 Color-Pair Preference Asymmetries …………………….................... 44 

3.1.2 Previous Research on Spatial Aspects of Preference for Color Pairs... 44 

3.2. Aim of Experiments 5-7: Understanding Color-Pair Preference Asymmetries. 45 

 3.3. Experiment 5: Asymmetries in Preference for Color Pairs………………….... 46 

  3.3.1 Methods………………………….…………………………….…...... 46 

  3.3.2 Results and Discussion…………………………………………….… 46 

3.4. Experiment 6: Effects of Relative Area on Preference Asymmetries ................ 50 

3.4.1 Methods………………………….…………………………….…...... 52 

  3.4.2 Results and Discussion…………………………………………….… 53 

3.5. Experiment 7: Effects of Area for Separated Regions ...................................... 55 

3.5.1 Methods………………………….…………………………….…...... 56 

  3.5.2 Results and Discussion…………………………………………….… 56 

 3.6. General Discussion of Experiment’s 5-7……………………….……………... 57  

4. General Conclusions..……………….….…………….….…………….….………..….... 59 

5. References………………………….………………………….…………………..…….. 61 



!

  iii 
!

 

List of Figures 
 

Figure 1. The 32 chromatic colors of the BCP …………………..…………………...…….2 
 
Figure 2. Pair Preference ratings as a function of hue…………………..………………..... 9 
 
Figure 3. Main effects of figure and ground hue in pair preferences…...………..………... 10 
 
Figure 4. Regression models for Experiments 1-4……………….…...……………………. 12 
 
Figure 5. Pair preference ratings as a function of cut……………………………………… 13 
 
Figure 6. Pair preference ratings as a function of hue difference and cut…………...….. ... 14 
 
Figure 7. Harmony ratings as a function of hue………………………………………......... 17 
 
Figure 8. Harmony ratings as a function of cut …………………………………………….18 
 
Figure 9. Comparisons between harmony ratings for different cut combinations…….……19 
 
Figure 10. Pair harmony ratings as a function of hue difference and cut…………...……... 20 
 
Figure 11. Pair preferences as a function of harmony preferences for each pair……........... 22 
 
Figure 12. Preference for harmony as a function of formal color training.……………....... 24 

Figure 13. Pair preferences of participants with low, moderate, and advanced formal  
 color training …………….…………………………………………………...... 26 
 
Figure 14. Regression models predicting pair preferences of participants with different  

 degrees of formal color training………………………………………………... 27 
 

Figure 15. Pair similarity ratings as a function of hue……………………………………... 29 
 
Figure 16. Pair similarity ratings as a function of cut……………………………………... 29 
 
Figure 17. Pair harmony ratings as a function of hue difference and cut…………...……... 30 
 
Figure 18. Comparisons between similarity ratings for different cut combinations……..… 31 
 
Figure 19. Figural color preferences as a function of hue…………………………………. 35 

Figure 20. Figural color preferences as a function of cut………………………………...... 36 



!

  iv 
!

 
Figure 21. Comparisons between figural color preference for different cut combination…. 37 
  
Figure 22. Figural color preference ratings as a function of hue difference and cut………. 38 

Figure 23. Preference asymmetries for figure-ground hue combinations………………...... 47  

Figure 24. Preference asymmetries as a function of yellowness-blueness and  
 lightness-darkness difference between the figure and ground colors.…………. 48 

 
Figure 25. Predicted preference asymmetries depending on whether image-based or  

 surface-based relative area is more important…………………………………. 51 
 
Figure 26. Preference asymmetries as a function of yellowness-blueness and  
 lightness-darkness difference between the figure and ground colors for   
 different relative areas between the two regions……………………………….. 53  
 
Figure 27. Interactions in preference asymmetries between relative area and figure-ground 

yellowness-blueness and lightness-darkness differences………………………. 54 

Figure 28. Perceived image-based area as a function of actual image-based area………… 55 

Figure 29. Preference asymmetries for mosaic configurations as a function of  
 yellowness-blueness and lightness-darkness difference between the small  
 and large region colors……………………………….…………………………56



!

  v 
!!

 
 

List of Tables 
 

Table 1. The Berkeley Color Project (BCP) 32 chromatic colors..……………………. 3 
 
Table 2. Correlations between preference-for-harmony and Big Five Inventory (BFI)  

 scores..………..…………….………..……………………..…………….…... 23 
 
 

 

 



!

  vi 
!

 

Acknowledgments 

I would first and foremost like to thank my parents, Nina and Lou Schloss, for always 
encouraging me to follow my dreams and teaching me that no goal is too great to accomplish. I 
thank Lori, Jill, Unc, Melody, and Grandma for their unconditional love and support. I thank 
Joseph Austerweil being my sunshine, loving partner, and programming/statistics knight in 
shinning armor. I thank Ani Flevaris, Amy Finn, and Francesca Fortenbaugh for being my 
personal cheerleaders and my best Berkeley friends.  

I thank Steve Palmer for being an outstanding academic advisor and so much more. He 
has given me the tools to spread my research wings and is always ready to talk about anything, 
be it new research ideas, pretty data, or boys. I thank Bill Prinzmetal for his unconditional 
encouragement and smoothie outings. I thank Karen De Valois for teaching me about color, for 
dinner dates, and being my Berkeley mom. I thank Katherine Sherwood for giving me 
enthusiastic feedback from an artist’s perspective. I thank Robert Remez for shaping a young 
undergraduate who wanted to study color into a young scientist who was ready to embark upon 
graduate school. I thank Mike Webster for teaching me how to accurately produce colors and for 
answering my countless questions over email from Reno. I thank Tom Wickens for his 
enthusiastic help with statistical analyses. I thank Ted Crum for his outstanding technical 
support.  

I thank everyone I have worked with in the Palmer Lab for making the lab feel like my 
second family. Especially, I thank Joseph Brooks for being my role model for what it means to 
be a great graduate student and Jonathan Sammartino for being my awesome “brother” with 
whom I got to share this journey through graduate school. I thank Rosa Poggesi for being my 
right-hand woman and close friend and Will Griscom always being willing to talk about ideas. 
Finally, I thank my fantastic flock of ducklings for their help with data collection and analysis: 
Eli Strauss, Christie Nothelfer, Lily Lin, Patrick Lawler, Mathilde Heineman, Laila Kahn, 
Christopher Lau, Divya Ahuja, Jing Zhang, Cat Stone, Gary Hackett, Zoe Xu, Matt Barker-
Benfield, Madison Zeller, and Arielle Younger.  

 

 

  

 



!

  1 
!

1. Introduction 
 

People make decisions about how to combine colors to achieve desired aesthetic effects 
nearly every day. Some decisions are as simple as choosing which color of shirt to wear with a 
chosen pair of slacks, whereas others are as complex as deciding on this week’s color scheme for 
their personalized webpage interface. Those whose jobs require attention to the aesthetic impact 
of color combinations – e.g., interior decorators, graphic designers, architects, and artists – face 
many more such decisions that have even more important consequences. 

When evaluating the aesthetic value of color combinations scientifically, there are two 
primary factors to consider: a) the relations among the colors in color space and b) the relative 
sizes of the colored regions. Color theorists in art have proposed many rules that prescriptively 
describe which colors should be combined to produce “preferable” and/or “harmonious” 
combinations, terms that they typically conflate.  Some of the best known of these prescriptions 
include: Chevreul’s (1838) theory that there are both harmonies of analogous colors and 
harmonies of contrasting colors, Itten’s (1961/1973) theory that two or more colors are 
harmonious if they compose neutral gray when mixed together, Munsell (1921/1969) and 
Ostwald’s (1931) theories that colors are harmonious when they lie on certain paths in color 
space (e.g., varying in lightness while holding hue and saturation constant). Still others have 
been proposed by Nemscics (1993), Goethe (1810/2006), and Moon and Spencer (1944a; 
1944b).  

There has been considerably less work on how the relative size of different colored 
regions influences the aesthetic value of the combination. For Munsell (1921/1969), images 
appear harmonious when the colors are centered on middle gray in Munsell color space and are 
equal in the product of their area times their value (lightness/darkness) times their chroma 
(saturation).  Moon and Spencer’s (1944c) theory is similar to Munsell’s, but suggests that the 
center point of the color composition should be the adaptation point (rather than simply middle 
gray).  For Moon and Spencer (1944c), a combination is pleasing if area-1 times distance 1 = 
area-2 times distance 2, where distance is a Euclidean distance in Munsell space between a color 
and the adaptation point. Finally, Itten’s (1961/1973) theory of color proportions is based on 
Goethe’s (1810/2006) notion of color intensities, where yellow is most “intense,” followed by 
orange, green, red, blue and violet. Itten suggested that colors should be combined in a spatial 
ratio that is reciprocal to their intensities. For example, if yellow is a “9” in intensity and violet is 
a “3” they should be combined in a spatial ratio of 1:3.  

The present research is an extended empirical investigation of aesthetic preferences for 
color combinations. Chapter 2 examines preferences for color pairs and how they relate to color 
harmony, color similarity, and single color preferences. The goal is to clarify the confusing and 
conflicting claims of previous theories, such as the claim that harmony increases with hue 
similarity versus the claim it decreases with hue similarity. Such confusions are largely resolved 
by distinguishing among three judgments about color pairs: (a) preference for the pair as a 
whole, (b) perceived harmony of the pair, and (c) preference for its figural color when viewed 
against its colored background. Empirical support for this distinction shows that pair preference 
and harmony both increase as hue similarity increases, but preference relies more strongly on 
component color preference and lightness contrast. Although pairs with highly contrastive hues 
are generally judged to be neither preferable nor harmonious, figural color preference ratings 
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increase as hue contrast with the background increases. Thus, the present results refine and 
clarify some of the best-known and most contentious claims of color theorists. 

Chapter 3 investigates how spatial factors influence preference for color combinations.  
Evidence for preference asymmetries is presented, where people prefer one color pair to another 
even though the two pairs differ only in having opposite assignment of the colors to different 
spatial regions. Participants preferred two-color figure-ground displays (a small square centered 
on a large square) when the color of the larger region was bluer, darker, and more preferred than 
that of the smaller region.  Different spatial arrangements were then tested to isolate which 
factors most strongly influence these asymmetries (e.g., relative area and surroundedness). The 
results show that the relative surface-based area (after amodal ground completion behind the 
figure) is more important than image-based area. 

Many of the experiments discussed in this dissertation are part of the Berkeley Color 
Project (BCP), a massive repeated measures (MRM) design aimed at understanding color 
aesthetics within the context of color perception and various color associations (Palmer & 
Schloss, 2010).  All participants completed the same set of 30 tasks, divided over eight 
experimental sessions, using the same set of colors (see below) so that direct comparisons could 
be drawn across data sets.  

The colors tested in all of the experiments were from the 32 BCP chromatic colors 
(Figure 1 and Table 1). The colors were sampled according to the dimensional structure of the 
Natural Color System (NCS) (Hård & Sivik, 1981), although they were actually chosen from the 
Munsell Book of Colors, Glossy Series (Munsell, 1966), and translated into CIE xyY coordinates 
to generate them on our computer using the Munsell Renotation Table (Wyszecki & Stiles, 
1967).  The sample included highly saturated colors of the four so-called Hering primaries 
approximating the unique hues: red (R), green (G), blue (B), and yellow (Y), (Munsell hues 5R, 
5Y, 3.75G, and 10B, respectively).  There were also four well-balanced binary hues that 
contained approximately equal amounts of the adjacent pair of unique hues: orange (O) between 
Y and R, purple (P) between R and B, cyan (C) between B and G, and chartreuse (H) between G 
and Y (Munsell hues 5YR, 5GY, 5BG, and 5P, respectively).   

 

Figure 1. (A) The 32 chromatic colors of the BCP as defined by eight hues, consisting of four 
approximately unique hues (Red, Green, Yellow, Blue) and their approximate angle bisectors (Orange, 
cHartreuse, Cyan, Purple), at four “cuts” (saturation-brightness levels) in color-space (Saturated, Light, 
Muted, and Dark) and (B) the projections of these 32 colors onto an isoluminant plane in CIELAB color-
space (Palmer & Schloss, 2010).  
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Then four “cuts” through color space were defined that differed in their saturation and 
lightness levels, as follows.  Colors in the “saturated” (S) cut were defined as the most saturated 
color of each of the eight hues that could be produced on our monitor.  Eight colors in the 
“muted” (M) cut were those that were approximately halfway between the S color and the 
Munsell value of 5 and chroma of 1 for the same hue.  Eight colors in the “light” (L) cut were 
those that were approximately halfway between each S color and the Munsell value of 9 and 
chroma of 1 for the same hue.  Eight colors in the “dark” (D) cut were those that were 
approximately halfway between each S cut and Munsell value of 1 and chroma of 1 for the same 
hue.  The L, M, and D colors within each Munsell hue were equivalent in Munsell chroma 
(saturation).   

Table 1. CIE 1931 values and Munsell values for the 32 chromatic colors (from Palmer & 
Schloss, 2010). 

Color x y Y   Hue Value/Chroma 

Red 

Saturated 0.549 0.313 22.93  5 R 5/15 
Light 0.407 0.326 49.95  5 R 7/8 
Muted 0.441 0.324 22.93   5 R 5/8 
Dark 0.506 0.311 7.60  5 R 3/8 

!        

Orange 

Saturated 0.513 0.412 49.95  5 YR 7/13 
Light 0.399 0.366 68.56  5 YR 8/6 
Muted 0.423 0.375 34.86  5 YR 6/6 
Dark 0.481 0.388 10.76  5 YR 3.5/6 

!        

Yellow 

Saturated 0.446 0.472 91.25  5 Y 9/12 
Light 0.391 0.413 91.25  5 Y 9/6.5 
Muted 0.407 0.426 49.95  5 Y 7/6.5 
Dark 0.437 0.450 18.43  5 Y 5/6.5 

!        

Chartreuse 

Saturated 0.387 0.504 68.56  5 GY 8/11 
Light 0.357 0.420 79.90  5 GY 8.5/6 
Muted 0.360 0.436 42.40  5 GY 6.5/6 
Dark 0.369 0.473 18.43  5 GY 4.5/6 

!        

Green 

Saturated 0.254 0.449 42.40  3.75 G 6.5/11.5 
Light 0.288 0.381 63.90  3.75 G 7.75/6.25 
Muted 0.281 0.392 34.86  3.75 G 6/6.25 
Dark 0.261 0.419 12.34  3.75 G 3.75/6.25 

!        

Cyan 

Saturated 0.226 0.335 49.95  5 BG 7/9 
Light 0.267 0.330 68.56  5 BG 8/5 
Muted 0.254 0.328 34.86  5 BG 6/5 
Dark 0.233 0.324 13.92  5 BG 4/5 
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!        

Blue 

Saturated 0.200 0.230 34.86  10 B 6/10 
Light 0.255 0.278 59.25  10 B 7.5/5.5 
Muted 0.241 0.265 28.90  10 B 5.5/5.5 
Dark 0.212 0.236 10.76  10 B 3.5/5.5 

!        

Purple 

Saturated 0.272 0.156 18.43  5 P 4.5/17 
Light 0.290 0.242 49.95  5 P 7/9 
Muted 0.287 0.222 22.93  5 P 5/9 
Dark 0.280 0.181 7.60   5 P 3/9 

 

 
2. Dissociating Preference, Harmony, and Similarity of Color Pairs  

2.1.  Introduction to the Aesthetics of Color Pairs  

Colors are rarely experienced in isolation.  In nature, yellow daffodils are seen against 
green grass; in the built environment, a dark brown couch is viewed against a light beige wall; in 
Van Gogh’s Starry Night, the golden moon is highlighted against a deep blue sky.  In all of these 
examples, the aesthetic experience of any given color is strongly influenced by its participation 
in combinations of two or more colors.  In discussing color aesthetics it is therefore essential to 
consider not only how much people like individual colors (e.g., Hurlbert & Ling, 2007; Palmer 
& Schloss, 2010), but also how colors interact in more complex chromatic compositions. 

2.1.1. A New Framework for the Aesthetics of Color Pairs 
In this section, a new framework for discussing the aesthetic preferences for color 

combinations is outlined, in which there are three distinct ways of evaluating perceptual 
responses to color combinations: (a) people’s aesthetic preference for a given combination, (b) 
their perception of harmony for that combination, and (c) their preference for its figural color 
when viewed against a colored background.  These concepts have often been confused and/or 
confounded in the literature on color combinations, as explained below.  It is argued that 
distinguishing among these three concepts and show that they are demonstrably different when 
they are clearly defined and appropriately measured.  Moreover, results show that making these 
distinctions clarifies many previous confusions and resolves existing conflicts in the literature.  

Pair preference is defined as how much an observer likes a given pair of colors as a 
Gestalt, or whole. Pair harmony is defined as how strongly an observer experiences the colors in 
the combination as going or belonging together, regardless of whether the observer likes the 
combination or not.  These two judgments will be quite similar for an observer who likes 
harmonious color combinations (e.g., dark blue and light blue), but they can be arbitrarily 
different for an observer who likes contrastive color combinations (e.g., dark blue and saturated 
yellow).  The distinction we draw between preference and harmony for colors is most easily 
understood by analogy to music.  Nearly everyone who hears representative works by Mozart 
and Stravinsky agrees that Mozart’s music is more harmonious (or consonant) and Stravinsky’s 
music is more disharmonious (or dissonant). Nevertheless, some people prefer Stravinsky, 
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whereas others prefer Mozart.  There will be a positive correlation between average judgments of 
musical harmony and musical preference if people generally prefer harmonious to disharmonious 
music, but that does not constitute evidence that they are conceptually the same. Because 
preference and harmony are so clearly different concepts in music perception, it seems unlikely 
that they are the same concept in color perception.  Finally, figural preference is defined as how 
much the observer likes the figural color itself, when viewed against its background color.  
Figural color preference is only indirectly a measure of perception of the color combination 
because the observer is specifically asked to respond only to the figural color.  It is nevertheless 
relevant to aesthetic response to color combinations because the same color can look quite 
different when viewed against different background colors, as documented in the well-known 
phenomenon of simultaneous color contrast (e.g., da Vinci, 1492; Chevreul, 1839; Helmholtz, 
1866/1925; Walraven, 1976; Shevell, 1978). 

2.1.2. Art Theorists on Aesthetics of Color Combinations 
Previous analyses of the aesthetics of color combinations have not clearly distinguished 

among the three aforementioned types of judgments. “Preference” and “harmony” are often used 
interchangeably, and preference for a combination taken as a whole is frequently confused with 
preference for a figural color against a background color. For example, in one of the most 
influential art-based theories of color aesthetics, Chevreul (1839) used the terms ‘preference’ and 
‘harmony’ as though they were equivalent, and further claimed that there are harmonies of both 
analogous colors and contrasting colors. His harmony of analogous colors includes: (a) harmony 
of scale for colors that are similar in lightness and the same in hue and (b) harmony of hues for 
colors that are the same in lightness and similar in hue.  Harmony of contrast includes: (a) 
harmony of contrast of scale for colors that differ significantly in lightness and are the same in 
hue, (b) harmony of contrast of hues for colors that differ in lightness and are similar in hue, and 
(c) harmony of contrast of colors for colors that are different in hue and different in lightness 
(although the lightness difference is claimed to be auxiliary).  Other theories of harmony include 
Itten’s (1961/1973) theory that two or more colors are harmonious if they produce neutral gray 
when mixed together as paints, Munsell’s (1921) and Ostwald’s (1931) theories that colors are 
harmonious when they have certain relations in color space (e.g., when they vary in lightness but 
are constant in hue and saturation), as well as other theories proposed by Nemscics (1993), 
Goethe (1810/2006), and Moon and Spencer (1944a; 1944b). (See Westland, Laycock, Cheung, 
Henry, and Mahyar (2007) and Burchett (2001) for a review).  These theories are different 
enough that, if all their predictions were pooled, nearly every color pair could be considered 
harmonious!   

2.1.3. Empirical Work on Aesthetics of Color Pairs 
The art theoretical literature is thus riddled with confusions and contradictions. Not 

surprisingly, these carry over to the empirical literature as well.  For example, Granger (1952; 
1953; 1955a; 1955b; 1955c) conducted an extensive series of experiments on color combinations 
but used “preference” and “harmony” interchangeably.  Indeed, he inexplicably changes 
terminology from one article to another in the same issue of the same journal, referring to 
“harmony” judgments he reported in two of these articles (Granger, 1955a; 1955b) as 
“preferences” in the third (Granger, 1955c).  Even so, it is useful to consider his tasks and results 
in light of the distinctions we raise among judgments of pair preference, pair harmony, and 
figural preference.  
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Granger (1955a) found that perception of what he called “harmony” increased as hue 
difference increased.  In Chevreul’s terminology, this result appears to indicate that people 
perceive harmony of contrastive hues but not harmony of analogous hues.  The task Granger 
(1955a) used, however, was ambiguous about what aspect of the color combinations were to be 
judged.  He gave participants a color wheel with 20 removable hue wedges.  Their task was to 
move one of the wedges (the “standard”) around the circle until they found the hue “with which 
it made the best combination.” When a hue was chosen, it was removed from the circle and the 
selection process was repeated until all of the remaining hues were chosen, defining a rank 
ordering of the “harmonies” of each figural color against all background colors.  In light of our 
three-fold distinction, it is manifestly unclear what criterion his observers should use to define 
the “best combination.”  Is it how well the colors go together (pair harmony), how preferable the 
combination is as a whole (pair preference), or which accompanying color made the standard 
color look best (figural preference)? Granger’s (1955a) finding that “harmony” increased with 
increasing hue contrast resembles the pattern that we find when we ask observers to make ratings 
of figural preference (see Experiment 4) and the pattern Helson and Lansford (1970) found when 
they asked observers to rate “object colors” on different colored backgrounds.  This suggests that 
Granger’s (1955a) participants may actually have judged what we are calling figural preference: 
which accompanying (background) color made the standard (figural) color look best.   

In the same journal issue Granger (1955c) measured preferences and/or harmony again 
by asking participants to rank order single color preferences and all pair-wise combinations of 20 
hues.  He then modeled color combination preferences in terms of individual color preferences 
and hue distance.  He found that harmony/preference increased as hue distance increased in this 
task as well, suggesting that his subjects may actually have liked and/or found the combinations 
more harmonious when they differed greatly in hue.  However, more recent empirical results 
(e.g., Ou & Luo, 2006, and those reported in Experiment 1 below) have found the opposite.  To 
make matters worse, Allen and Guilford (1936) measured the “affective value” of color 
combinations (presented side-by-side) and found no clear overall effect of hue similarity, 
although there was some evidence that very small or very large differences in hue were more 
pleasing than moderate differences. There has been additional empirical work on color harmony 
(e.g., Nemcsics, 2007; 2008; 2009a; 2009b), but it does not seem to settle the conflicting results.  

2.1.4. Evidence for a Distinction between Preference and Harmony 
A few previous art theorists (e.g., Albers, 1971) and perceptual researchers (e.g., Ou, 

Luo, Woodcock, Wright (2004b; 2004c)) have made a distinction similar to the one we advocate 
between pair preference and pair harmony.  Albers (1971), for example, argued against 
Chevreul’s idea that people necessarily prefer harmonious combinations, suggesting that 
dissonance can be as desirable as consonance.  One can find evidence of this belief in many of 
his well-known color studies entitled “Homage to the Square.”  

More recently, Ou et al. (2004a; 2004b) measured both preference and harmony for 190 
color pairs by asking subjects to report two binary judgments: whether each pair was liked or 
disliked and whether it was harmonious or disharmonious.  They found that average harmony 
and average preference judgments were indeed highly correlated (r = +.85), but emphasized that 
even if an observer finds a pair to be harmonious, there is a moderate (31%) chance that he or 
she will dislike the color pair.  However, Ou et al. (2004b) neglected to describe which types of 
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combinations are harmonious yet disliked and to investigate whether there are individual 
differences in preference for harmony.  In the present thesis we address both issues.   

2.1.5. Empirical Work on Figural Color Preference  
Thus far, we have focused on judgments of color combinations as a whole, either in terms 

of experiences of preference or harmony.  Distinct from both of these judgments is preference for 
a figural color against a background color.  Simultaneous color contrast is a well-known 
phenomenon: The color of the surround can strongly influence the appearance of the surrounded 
color (da Vinci, 1492; Chevreul, 1839; Helmholtz, 1866/1925; Walraven, 1976; Shevell, 1978). 
Presumably, this implies that the color of the background can also influence an observer’s 
preference for the figural color.  Helson and Lansford (1970) studied the effects of background 
color on preference for “object” (figural) colors by asking participants to rate (from 1-9) 125 
object colors against 25 different colored backgrounds.  Object colors were more preferred 
against backgrounds with contrasting lightness and, to a lesser extent, contrasting saturation.  
The effects of hue difference were more ambiguous, but generally speaking, object colors were 
more preferred on backgrounds with contrasting hues.  It is noteworthy that although Helson and 
Lansford (1970) framed their research question in terms of preference for “object colors” against 
different backgrounds – a clear example of figural preference in our terminology – they actually 
discussed their results in terms of pair preference and pair harmony without making a principled 
distinction among these types of judgments.  Even so, it is clear from their description of the task 
that, in our terms, they were actually studying what we term figural preference for a foreground 
color against a colored background. 

Camgöz, Yerner, and Güvenç (2002) also studied how background color influenced 
object color preference, but they reported finding no effects of similarity or contrast.  This might 
have occurred because they only measured each participant’s single most preferred color on each 
of eight background hues, which is unlikely to have provided sufficiently detailed data to 
observe figural preference effects, even if they exist.   

2.2. Aim of Experiments 1-4: Distinguishing Pair Preference, Harmony, Similarity, and 
Figural Color Preference  

Experiments 1-4 examine the same participants’ judgments of pair preference, pair 
harmony, pair similarity, and figural preference against colored backgrounds, drawing also on 
their single color preference ratings (Palmer & Schloss, 2010), as assessed within the MRM 
design. Evidence shows that the three kinds of judgments distinguished above are empirically as 
well as conceptually distinct and that a principled analysis of their interrelations clarifies much of 
the confusion in the literature on perception of color combinations.  

 

2.3. Experiment 1: Preference for Color Pairs 

Experiment 1 investigated preference for all pair-wise combinations of the BCP 32 
chromatic colors studied in the BCP described in the Introduction (see Figure 1).  Participants 
saw all possible pairs of the 32 chromatic colors in a figure-ground organization: a small square 
centered within a larger square, displayed against a neutral gray background.  Both figure-ground 
organizations of each pair of colors were tested: A on B and B on A.  For each pair, participants 
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rated their aesthetic preference (how much they liked the pair as a whole) by selecting the 
appropriate point along a continuous line-mark response scale.   

2.3.1. Methods 
Participants. There were 48 participants (24 males and 24 females) who completed all 

30 tasks of the BCP.  All participants were screened for color deficiency using the Dvorine 
Pseudo-Isochromatic Plates, and none of them were found to be color deficient.  All participants 
gave informed consent, and the Committee for the Protection of Human Subjects at the 
University of California, Berkeley, approved the experimental protocol (#2006-7-38).   

Design.  All pair-wise combinations of the 32 chromatic colors described above  (see 
Figure 1 and the Appendix) were used to generate 992 figure-ground color combinations.   

Displays.  Test configurations were figure-ground pairs consisting of a small square 
(100px x 100px) centered on a larger square (300px x 300px).  A continuous rating scale (400px 
long), containing demarcated center and endpoints, was located below the figure-ground pair.  
The rating scale was used to indicate how much each participant liked each display, ranging from 
“not at all” (written below the left endpoint) to “very much” (written below the right end point).  
Participants viewed the computer screen from approximately 70 cm.  The monitor (Dell M990) 
was 18” diagonally with a resolution of 1024 x 768px.  The background of the display was 
always a neutral gray (CIE x = 0.312, y = 0.318, Y = 19.26). The chromaticity and luminance 
functions of the red, green, and blue guns were measured as each gun ranged in voltage from 0-
255 in equal steps of 17 using a Minolta CS100 Chroma Meter. The chromaticity and luminance 
functions for each gun were used to calculate the appropriate RGB values to ensure that we 
accurately presented the CIE xyY values for our colors.  The displays were generated and 
presented using Presentation (www.neurobs.com). 

Procedure.  The 992 figure-ground combinations were displayed one at a time in a 
random order.  The participants’ task was to indicate how much they liked each combination on a 
scale from “not at all” to “very much.” To respond, they used the mouse to move the cursor 
along the response scale and click on the point that best represented their degree of preference.  
Participants were informed that the vertical mark crossing the center of the scale represented a 
neutral (or zero) point. The recorded datum on a given trial corresponded to the x-coordinate (in 
pixels) at which the participant clicked on the scale for that trial, where 0 was the center of the 
scale.  The response scale thus ranged from -200 (left endpoint of the 400 px scale) to +200 
(right endpoint of the 400 px scale) and was normalized to range from -100 to +100 in the 
reported data.  Trials were preceded by a 500ms inter trial interval (ITI) and lasted until 
participants made a response.  Participants were allowed to take a break after each set of 60 
trials.    

 

2.3.2. Results and Discussion 
Mean preference ratings for color pairs as a function of figural hue and ground hue are 

plotted in Figure 2A, averaged over S, L, M, and D cuts.  The data show main effects of figural 
hue (F(7,329) = 8.32, p < .001) and ground hue (F(7,329) = 10.70, p < .001) as well as a 
powerful interaction between them (F(49, 2303) = 25.42, p < .001). The pattern of results, 
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although complex, is highly regular, with three primary features.  First, the peaks in the functions 
of Figure 2A show that figure-ground combinations for each ground hue are most preferred when 
the ground hue and figure hue are the same.1  Second, pair preferences decrease monotonically 
as a function of the difference in hue between figure and ground.  For example, the green 
ground-hue function in Figure 2A peaks when the figural color is another shade of the same 
green hue and decreases systematically as the figural color becomes less similar to green on both 
sides of the peak.  (The reader is reminded that hue is a circular dimension, such that purple on 
the right end of the graph is perceptually similar to red on the left end of the graph.)  

 
Figure 2. Preference ratings for color pairs (A) as a function of figural hue (x-axis) and ground hue 
(separate lines) and (B) as a function of the hue difference (in terms of steps in the BCP design) between 
the figure and ground. Error bars represent the standard errors of the means (SEM). 

Figure 2B shows the same data as in Figure 2A, but re-plotted as a function of the hue 
difference between the figure and ground colors (in terms of the number of hue steps in the BCP 
color sample). This plot emphasizes that pair preferences are highest when the figure and ground 
have the same hue (but differ in saturation and/or lightness levels) and decrease monotonically as 
hue difference between the figure and ground increases. It also provides clear evidence that 
people like Chevreul’s (1839) “harmonies of analogous colors” but virtually no evidence in favor 
of corresponding effects for contrastive hues. If the latter were present, the functions would 
curve upward toward the right end, where the figure and ground hues are maximally contrasting. 
No increases in preference for complementary colors are evident when the Bonferroni correction 
is applied to adjust for the eight t-tests, one for each ground hue (α = .006).  

Although this definition of “maximally contrasting” uses the perceptual complementary 
colors (red-green and yellow-blue), there is also little evidence of preference for contrastive hue 
combinations using paint-complementary colors: yellow-purple, blue-orange, and red-green. 
This was tested by comparing preference for pairs of paint complements versus the average of 
the pairs containing the two hues adjacent to their paint-complements (F(1,47) = 1.53, p > .05), 
after accounting for the variance explained by figure and ground color preferences (when judged 
singly on a neutral gray background, see Palmer and Schloss, 2010). The only paint-
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Notice that there are no data from the conditions in which the figural hue is the same as the 
ground hue when both are in the same cut (lightness and saturation level), because there would 
be zero contrast between them. The statistical tests are therefore computed from the averages of 
all pairwise combinations of the four cuts for a given hue pair (16 pairs when the hues in the 
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complementary pair that was more preferred than its nearest neighbors (after applying the 
Bonferroni correction) was orange-blue compared with the average of orange-cyan and orange-
purple (F(1,47)  = 11.17, p < .008).  

The third salient feature of the results is the systematic variation in pair preferences with 
hue.  Both the maxima of the ground-hue functions and their overall level generally increase as 
the hues become bluer and decrease as they become yellower. The strong correlation (r = +.94) 
between the level of the curves in Figure 2B (mean preference across hue differences of 0 to 3) 
and the sharpness of their decline (slope of the best-fitting line between hue differences of 0 to 3) 
indicates that grounds containing more preferable hues (e.g., blue, cyan, and purple) get a larger 
preference increment when paired with figures of the same or similar hues than do grounds 
containing less preferable hues (e.g., yellow and orange). 

Figure 3A isolates main effects of figural hue and ground hue. The shape of these 
functions, showing preference for cooler over warmer colors, closely resembles the shape of the 
hue preference function for single color preference ratings (Palmer & Schloss, 2010) from the 
same participants (Figure 3B). This resemblance strongly suggests that preferences for color 
pairs are influenced to some degree by preferences for the component colors.  

 
Figure 3. (A) Main effects of ground hue (open circles) and figure hue (closed circles) for pair preference 
ratings, and (B) for single color preferences of the same participants (Palmer and Schloss, 2010). Error bars 
represent the standard errors of the means (SEM). 

A multiple linear regression model was used to determine the degree to which the same 
participants’ preferences for the component ground and figure colors (when judged singly on a 
neutral gray background, see Palmer and Schloss, 2010) could account for pair preferences. Only 
21.7% of the variance in pair preferences for all 992 color pairs could be explained by single 
color preferences: 15% from ground color preference and an additional 6.7% from figural color 
preference. Ground color preference influences pair preference more than figural color 
preference, as indicated by the facts that ground color preference accounts for more variance 
than figural color preference and that the ground curve in Figure 3A is more extreme than the 
figural curve.  This somewhat surprising result may simply reflect the fact that the ground color 
covers more area than the figural color.  Even so, this additive model based on single color 
preferences accounts for relatively little variance in the overall pattern of results because it 
cannot, by definition, explain the complex figural-hue x ground-hue interaction so clearly present 
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in Figure 2A.  One or more relational factors are required.  Below we attempt to identify what 
those relational factors might be using various predictors derived from Munsell dimensions. 

The ten Munsell factors considered in this analysis were the hue difference (the number 
of Munsell hue steps by which the figural and ground colors differed), the sum, the signed 
difference, and the absolute value of the figure-ground difference in hue coolness (the number of 
Munsell hue-steps removed from Munsell hue 10R)2, the value (or lightness) and the chroma (or 
saturation) of the figural and ground colors. All possible combinations of factors were tested for 
all possible numbers of factors (i.e., all pairs of factors were tested in 2-factor models and all 
triplets were tested in 3-factor models, and so on up to 10 factors). The model we report as the 
“best” model was the model that explained the largest percentage of variance that also explained 
at least 1% more variance than the next best model with the same number of factors. We also 
report the results of the “full model” that includes all factors, but we do not name or give the 
order of entry for the factors included beyond those in the best model as just defined. 

The left-most bar in Figure 4 shows the best fitting model for pair preference ratings, 
where each factor’s increment in percentage of variance explained is represented by a 
corresponding increment in the height of the bar, with the lowest segment being the factor that 
was entered first. The best fitting model explained 53.5% of the variance in pair preference 
ratings, showing that more preferred pairs contained cooler colors that were similar in hue and 
contrasting in Munsell value (lightness). An additional 7% of the variance can be explained in 
the full model when all 10 factors are included, but there is no clearly defined “best” model (see 
above) in any of the regressions containing more than 3 factors.  

When figure and ground color preference are added to the 3-factor Munsell regression 
model shown in Figure 4, they account for an additional 9.4% of the variance (6.9% from ground 
color preference and 2.5% from figural color preference). This brings the total amount of 
variance explained to 62.9%, which shows that component color preferences are still important 
after the variance due to the relational factors in the Munsell model has been removed. In 
discussing the results of Experiment 2, however, we report an even better model, which explains 
80.8% of the variance, based on rated color harmony as a relational factor.   

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!10R (red-orange) was chosen because it was closest to the minimum of the coolness function 
obtained from participants’ ratings of this dimension.!

!
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Figure 4. Bars show the percentages of variance explained by the best-fitting Munsell models for pair 
preference (Experiment 1), pair harmony (Experiment 2), two-color similarity (Experiment 3), and figural 
color preference against colored backgrounds (Experiment 4). Stripes within each bar show the percentage 
of variance explained by each factor in the order with which they were entered in to the regression model 
(bottom to top). The sign before each term indicates whether the factor was positively or negatively 
weighted in the corresponding regression equation (e.g., “+∑Cool” indicates that the sum of the coolnesses 
of the component colors was positively related to rated preference, harmony, and similarity, whereas “-
|∆Hue|” indicates that the absolute value of their difference in hue was negatively related to these ratings). 

To further understand the nature of pair preferences, we also examined the effects of 
figural and ground cut:  saturated (S), light (L), muted (M) and dark (D). The means that were 
analyzed (see Figure 5) only included pairs with hue-difference steps of 1 through 4 because 
there were no zero hue-difference data for same-cut pairs.  The results show no main effects of 
figural cut (F(3,141) = 2.90, p > .05) or ground cut (F < 1), but there was a reliable interaction 
between them (F(9,423) = 7.66, p < .001). Pair-wise comparisons of cut combinations showed 
that the only effects of cut occurred for the saturated ground conditions: Combinations with 
saturated figures on saturated grounds were preferred to those with light, muted and dark figures 
on saturated grounds (t(47) = 3.74, 6.33, 3.56, p < .002), and those with light figures on saturated 
grounds were preferred to those with muted figures on saturated grounds (t(47) = 3.64, p < .002). 
(A critical value of .002 was used after applying the Bonferroni correction to compensate for the 
24 comparisons.)  
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Figure 5. Preference for color pairs for each ground cut (separate lines), as function of figure cut (x-axis). 
Data points for the saturated (S) figure cuts (open symbols) are plotted separately at an x-axis level similar 
to the muted (M) colors because they share similar lightness levels, but are slightly offset for clarity. Error 
bars represent the standard errors of the means (SEM). 

The effects of figure and ground cut as a function of hue difference between the figure 
and ground colors can be found in Figure 6. There were no data points for same-cut pairs with 
zero hue difference because the component colors were identical, so separate ANOVAs were 
conducted on two data sets. The first ANOVA included only hue-difference steps of 1 through 4 
for all cut comparisons (hereafter “∆1-4, all cuts”). The second ANOVA included all five hue-
difference steps (0 through 4) but only for cut comparisons in which the figure and ground were 
from different cuts (hereafter “∆0-4, different cuts”). As shown in Figure 6, pair preferences for 
all cut combinations decreased monotonically as hue difference between the figure and ground 
color increased (∆1-4, all cuts: F(3,141) = 27.83, p < .001);  ∆0-4, different cuts: F(4,188) = 
51.08, p < .001), which is consistent with the inclusion of contrast in Munsell lightness (value) in 
the previously described best-fitting regression model. There was also a 3-way interaction among 
figure cut, ground cut, and hue difference (∆1-4, all cuts: F(27,1269) = 2.22, p < .001;  ∆0-4, 
different cuts: F(24, 1128) = 4.31, p < .001), but the size of this interaction is small, its nature is 
unsystematic, and its interpretation is unclear. The simpler figure cut x hue difference interaction 
was systematic, however, with preference for pairs with D and M figures decreasing more 
rapidly than pairs with S and L figures as hue difference increased (∆1-4, all cuts: F(9, 423) = 
2.25, p < .05; ∆0-4, different cuts: F(8, 376) = 4.29, p < .001). There was no such interaction 
between ground cut and hue difference (∆1-4, all cuts: F(9, 423) = 1.16, p > .05; ∆0-4, different 
cuts: F(12, 564) = 1.61, p > .05).  
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Figure 6.  Pair preference ratings for figural color (separate lines) and ground color (separate graphs) of the 
display for each cut, as a function of the hue difference between the figure and ground colors. Error bars 
represent the standard errors of the means (SEM).   

Figure-ground asymmetries in preference (e.g., warmer-figure/cooler-ground vs. cooler-
figure/warmer ground) were also examined to see whether figure-ground status influenced pair 
preferences by testing the signed difference between the figure and ground color along the 
Munsell dimensions tested above. Pair preferences were slightly, but significantly, correlated 
with the differences in coolness, such that pairs with warmer figures on cooler grounds were 
preferred to the reverse (r = +.13, p < .001). The same was true of differences in Munsell value: 
Pairs with lighter figures on darker grounds were preferred to the reverse (r = +.14, p < .001). 
Nevertheless, these differences due to spatial figure-ground organization were quite small in 
comparison with the differences due to different colors. A regression model based on these two 
spatial predictors explained only 4% of the variance in pair preference, with the value difference 
accounting for 2% of the variance (lighter figures being preferred) and coolness differences 
accounting for an additional 2% (warmer figures being preferred). A further investigation of 
preference asymmetries using a two alternative forced choice task, in which the only difference 
between the two pairs in the comparison was the figure-ground assignment of the colors, will be 
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presented in Chapter 3.  The asymmetries of coolness and lightness noted here are robust in the 
forced choice task. 

2.4. Experiment 2: Color Harmony and its Relation to Preference 

Experiment 1 showed that there are clear, systematic patterns in preferences for color 
pairs that are governed primarily by component color preferences, coolness, hue similarity, and 
lightness contrast. Experiment 2 investigates what factors influence color harmony ratings and 
how they relate to pair preference ratings. 

Findings previously reported by Ou and colleagues (Chuang & Ou, 2001; Ou et al., 2004; 
Ou & Luo, 2006) suggest that perceived harmony of color pairs is closely related to pair 
preference.  Chuang and Ou (2001) found that pairs in which both colors were the same in hue 
were judged as more harmonious than those with different hues, and we found the same to be 
true for pair preferences in Experiment 1. They also found that pairs that were different in 
luminance were judged to be more harmonious than those that were similar in luminance, and we 
found the same to be true for pair preferences in Experiment 1. They further reported that 
preference for the component colors of a pair influenced harmony judgments: Pairs that included 
two favorite colors were most harmonious, followed by pairs that included one favorite color and 
then pairs with no favorite color.  Ou and Luo (2006) later reported that pairs were harmonious 
when colors were similar in hue, different in lightness, had a high combined (summed) lightness, 
and included light yellow as a component. Unfortunately, many of these conclusions are 
compromised by Chuang and Ou’s definitions of harmony as “that which pleases the viewer” or 
“that which is harmonious.” In the first definition, it is unclear whether “pleasing” refers to how 
well the colors go together (what we call pair harmony) or how much the observer likes the pair 
(what we call pair preference). Their second definition of harmony is simply circular and thus 
meaningless. 

The primary goal for Experiment 2 was to obtain harmony ratings that were 
uncontaminated by confusions with pair preference using the same participants and the same 
colors as in Experiment 1. These ratings were used to determine how well people’s harmony 
judgments can explain the pattern of variation in their pair preferences (see Experiment 1). In 
particular, it was predicted that perceived harmony might be the relational variable that would 
best complement preferences for the component figure and ground colors in explaining people’s 
preference ratings for color pairs.  In addition, the findings of Chuang and Ou (2001) were 
examined using a more refined definition of harmony by including the musical analogy 
described in the introduction when instructing our observers about the difference between 
harmony and preference.  A secondary goal, was to examine individual differences in 
“preference-for-harmony” as indexed by the correlation between people’s pair preference ratings 
in Experiment 1 and their harmony ratings in Experiment 2.   

2.4.1. Methods 
Participants. The participants were the same 48 observers who completed Experiment 1.   

Design and Displays.  The design and displays were the same as in Experiment 1, except 
that the left endpoint of the rating-scale line was labeled “dissonant” and the right endpoint was 
labeled “harmonious.”  
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Procedure.  As in Experiment 1, participants were presented with each of 992 chromatic 
figure-ground combinations, one at a time in a random order.  The harmony task was to indicate 
how “harmonious” the figure-ground color pair was on a scale from “dissonant” to 
“harmonious.”  In order to clarify the difference between preference and harmony, participants 
were told the following: “Your task will be to indicate how “harmonious” you find each 
combination – how well the colors go together – by clicking a point on a scale like the one 
below.  We are not asking you to rate how much you like each pair of colors.  Some people like 
color combinations that are harmonious and others like combinations that are dissonant.  For 
example, in music, some like Mozart and others like Stravinsky, but everyone would agree that 
Mozart is more harmonious and Stravinsky is more dissonant.” The harmony-rating task was 
completed in a different testing session that took place after the preference-rating task.   

2.4.2. Results and Discussion 
Because Chuang and Ou (2001) reported that their harmony data were influenced by 

preferences for the component figure and ground colors, the instructions in this experiment were 
specifically tailored try to dissociate such effects.  To examine the extent to which we succeeded, 
the influence of figure preference and ground preference on harmony ratings were examined in a 
two-factor regression analysis. The results show that only 1.4% of the variance in our harmony 
ratings is due to component color preferences: 1.1% from ground color preference and an 
additional 0.3% from figural color preference. This amount is an order of magnitude less than the 
21.7% of the variance that is due to figure preference and ground preference in the pair 
preference data of Experiment 1. This striking reduction supports the contention that, with 
appropriate instructions, observers can make harmony ratings that are essentially unaffected by 
their single color preferences. This difference between the present results and those of Chuang 
and Ou (2001) also supports the belief that their observers probably interpreted their instruction 
to judge how “pleasing” the color pairs were as asking, to some extent, about preference rather 
than or in addition to harmony (at least as defined it in the instructions).   

The pattern of color harmony ratings as a function of figural hue and ground hue is 
shown in Figure 7A.  Notice first that it is strikingly similar to the pattern of results for pair 
preference ratings but somewhat more exaggerated.  Indeed, the correlation between average 
pair-wise preference ratings and average pair-wise harmony ratings was +0.79, accounting for 
62% of the variance.  Given this strong positive relation, it is understandable that Chevreul and 
other color theorists erroneously equated color harmony and color preference: Generally 
speaking, people do tend to prefer harmonious color combinations.  That does not mean that 
harmony and preference are either conceptually or empirically the same, however.  It is also 
noteworthy that there was greater agreement among participants about their judgments of pair 
harmony than about their judgments of pair preference.  The correlation of each observer’s 
harmony ratings with the group-average harmony ratings (average r = +.51) was significantly 
greater than the corresponding correlation of their preference ratings with the group-average 
preference ratings (average r = +.36)  (t(47) = 5.72, p < .001).  This fact indicates that, whatever 
perceived color harmony might be, people are in better agreement about it than about their 
preferences for the same colored displays.  
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Figure 7. Harmony ratings for color pairs (A) as a function of figural hue (x-axis) and ground hue (separate 
lines) and (B) as a function of the hue difference (in terms of steps in the present BCP design) between the 
figure and ground. Error bars represent the standard errors of the means (SEM). 

The harmony data in Figure 7A reveal main effects of both figural hue (F(7,329) = 28.92, 
p < .001) and ground hue (F(7,329) = 22.80, p < .001), as well as a strong interaction between 
them (F(49,2303) = 64.85, p < .001).  Harmony ratings were highest for each pair when the 
figure and ground hues were the same, and they decreased monotonically as hue difference 
increased.  This result is consistent with Chevreul’s (1839) claim that analogous colors are 
harmonious.  It is also consistent with previous empirical studies of color harmony in which 
harmony was defined as “pleasantness”  (e.g., Chuang and Ou, 2001; Ou and Luo, 2006), even 
though the latter data appear to be contaminated by single color preferences for the reasons 
outlined above.   

As was also true for pair preferences, there is virtually no evidence supporting Chevreul’s 
(1839) claim that contrastive hues are harmonious. If there had been, the harmony curves in 
Figure 7B, which are plotted as a function of hue difference, would curve upward toward the 
right end, where the figure and ground hues are maximally contrasting (red-green and blue-
yellow). Instead, when these data are averaged over ground hue, there is a reliable decrease in 
harmony ratings for pairs from the hue-step 3 to hue-step 4 conditions (F(1,47) = 6.11, p < .05). 
The same is true for hues paired with their paint-complement (blue-orange and yellow-purple): 
paint-complement pairs were rated as reliably less harmonious than the same hues paired with 
the average of the two hues adjacent to their paint-complement (F(1,47) = 17.67, p < .001). Thus, 
the results are not in accord with what Chevreul presumably would have predicted. The only 
reliable up-turn is for the blue-ground/yellow-figure combination (F(1,47) = 11.05, p < .006),  
which may be an artifact arising from the fact that blue and gold (essentially, a shade of yellow) 
are the official school colors of the University of California, Berkeley, where the experiments 
were conducted. (See Schloss, Poggesi, and Palmer (in press) for an in-depth study of the 
influence of school colors on the color preferences of Berkeley and Stanford students.) The 
reliable increment for blue and yellow combinations over their immediately adjacent neighbors 
may also be due to the large lightness contrast between them.  
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Figure 8. Harmony ratings of color pairs for each ground cut (separate lines), as a function of figure cut (x-
axis). Data points for the saturated figure cut (open symbols) are plotted separately at the same x-axis point 
as the muted colors because they share similar lightness levels, but they are slightly offset for clarity. Error 
bars represent the standard errors of the means (SEM). 

An analysis of the effects of cut (saturation/lightness level) showed main effects of 
figural cut (F(3,141) = 28.25, p < .001), ground cut (F(3,141) = 10.19, p < .001), and their 
interaction (F(9,423) = 8.41, p < .001), as shown in Figure 8.  Combinations that contained 
lighter and less saturated colors tended to be rated as more harmonious. The results of paired 
comparisons between each cut combination can be found in Figure 9. To summarize: The L 
figures were judged most harmonious against all four ground cuts, and the D and S figures were 
judged least harmonious against all four ground cuts.   

!
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Figure 9. Comparisons between harmony ratings of color combinations with the same ground cut (separate 
quadrants) and different figure cuts. Icons adjacent to each row column represent the cuts of the figure-
ground pairs that were judged.  The lower triangle of each ground-cut matrix shows the results of t-tests (df 
= 47, *p ≤ .002, using the Bonferroni correction) and direction of the difference (e.g., “L > S” in the 
Saturated Ground quadrant indicates that light figures on saturated grounds were judged more harmonious 
than saturated figures on saturated grounds). The upper triangle of the matrix shows the means of the pairs 
that were compared. The means for comparisons with same-cut pairs (italicized text) include only hue-
difference steps of 1-4 for both pairs. All other means include all hue-differences steps (0-4). Bold face text 
indicates differences were significant. (Note: In this diagram, the figure squares.  
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Figure 10. Harmony ratings for figural color (separate lines) and ground color (separate graphs) of the 
display for each cut, as a function of the hue difference between the figure and ground colors. 

Figure 10 shows plots of harmony ratings for figure and ground cuts as a function of hue 
difference between the figure and ground colors. Similar to pair preference ratings from 
Experiment 1 (Figure 6), harmony ratings decreased monotonically as the hue difference 
between the figure and ground colors increased (∆1-4, all cuts: F(3,141) = 54.83, p < .001; ∆0-4, 
different cuts: F(4,188)= 111.70, p < .001), but the reductions are more pronounced (∆1-4, all 
cuts: F(3,141) = 27.71, p < .001; ∆0-4, different cuts: F(4,188) = 43.90, p < .001) (compare 
Figures 6 and 10).  

There was a 3-way interaction among figure cut, ground cut, and hue difference (∆1-4, all 
cuts: F(27,1269) = 3.26, p < .001; ∆0-4, different cuts: F(24,1128) = 6.03, p < .001). Relative to 
the other figural cuts, saturated figures are less harmonious with muted grounds of similar hues, 
light figures are more harmonious with light grounds of contrasting hues, light figures are more 
harmonious with muted grounds of similar hues, and muted figures are more harmonious with 
light grounds of similar hues. There was also an interaction between figure cut and hue 
difference (∆1-4, all cuts: F(9,423) = 4.19, p < .001; ∆0-4, different cuts: F(8,376) = 4.73, p < 
.001) in which harmony ratings for pairs including dark figures decrease more rapidly as hue 
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difference increased, relative to the other cuts.  There was no such difference between ground cut 
and hue difference (∆1-4, all cuts: F(9,423) = 1.06, p > .05; ∆0-4, different cuts: F<1). 

What, then, are the color appearance factors that influence ratings of color harmony?  The 
same 10 Munsell factors tested for pair preference in Experiment 1 were analyzed in regression 
analyses to predict perceived color harmony. The best fitting model (Figure 4) for the 992 color 
pairs showed that more harmonious pairs were more similar in hue, cooler, more desaturated, 
and more similar in coolness (67.3%  of the variance explained). When all 10 Munsell factors are 
included in the full model, 72.6% of the variance could be explained, but there was no clear 
“best” model with more than four factors.  

In the discussion of Experiment 1, we noted that one or more relational variables was 
required to account for the interaction between figure and ground colors in preference for color 
pairs.  We then identified a set of relational Munsell factors that explained 53.5% of the variance 
in such preferences. When the inherently relational factor of harmony ratings is also included as 
a predictor variable, the best linear model accounts for 80.8% of the variance in preference 
ratings (multiple r = +.90). Harmony ratings alone explain 62.3% of the variance (more than all 
ten Munsell factors combined), preference for the ground color adds another 9.3%, preference 
for the figure adds a further 4.7%, and the absolute value of the difference in Munsell values 
(lightnesses) adds a final 4.5% (larger lightness differences being preferred). Although there is a 
remarkably strong relation between harmony and preference, it falls considerably short of the 
equivalence that would be required to justify their interchangeable use by Chevreul (1839) and 
others (e.g., Granger, 1955a-c).  

What are the differences between pair preference and harmony? Many differences are 
found in the effects of cuts (saturation and lightness levels) where preferred pairs contain more 
dark and saturated colors and harmonious pairs are generally lighter (see Figures 6 and 8). Figure 
11 shows a scatter plot of preference ratings (y-axis) versus harmony ratings (x-axis) for each 
color pair in a way that highlights many of the principal differences. The high correlation 
between preference and harmony is evident in the strong linear trend of the point-cloud with a 
slope of somewhat less than unity.  Differences between preference and harmony are then 
evident in systematic deviations from the best-fitting regression line.  

First, Figure 11 shows that the color pairs that are more preferred than harmonious (upper 
left quadrant) are generally high in lightness contrast, whereas those that are more harmonious 
than preferred (lower right quadrant) are generally low in lightness contrast.  Second, it 
illustrates the dissociation between pair preference and pair harmony in terms of component 
color preferences.  Palmer and Schloss (2010) found that the same participants especially 
disliked dark yellow and dark orange, and Figure 11 shows that although pairs containing those 
particular colors were disliked, they were still judged to be harmonious when combined with 
light colors of similar hues.  Figure 11 also highlights some similarities between preference and 
harmony. First, pairs containing cool colors are generally both more harmonious and more 
preferred (toward the upper right quadrant) than pairs containing warm colors, which are less 
harmonious and less preferred (toward the lower left quadrant). Second, saturated red produces 
particularly disharmonious and disliked combinations (extreme lower left in Figure 11), 
particularly those pairs containing a saturated red ground.   
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Figure 11. Preference ratings for each color pair plotted as a function of its harmony rating. Each of the 
992 data points depicts an approximation of the figural color (small square) and ground color (large square 
behind the figure). The dashed line shows the best fitting regression line relating preference to harmony  (y 
= -7.93 + 0.52x). 

The differences between preference and harmony ratings can be analyzed quantitatively 
through regression analyses after their mutual variation (62.3%) has been removed.  First, as 
stated above, the residual systematic variance in preference ratings was due to preferable ground 
colors (9.3%), preferable figural colors (4.7%), and large differences in lightness (4.5%). In 
contrast, the residual systematic variance in harmony ratings was due to greater hue similarity 
(i.e., fewer Munsell hue steps apart) (13.7%) and lower overall saturation (i.e., lower sum of the 
Munsell chroma coordinates) (6.4%). Altogether, pair preference, hue similarity, and low 
saturation explain 82.4% of the variance in average harmony ratings (multiple-r = +.91). The 
latter two factors indicate that color pairs that are more harmonious than would be expected from 
preference ratings were the more similar pairs.  Hue difference is clearly a similarity metric, but 
total saturation is also relevant to color similarity, because pairs of desaturated colors are closer 
to the center of color space, and all else being equal, closer together in color space than are 
highly saturated colors of corresponding hues and lightnesses.   
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Spatial asymmetries in the pair harmony ratings due to figure-ground organization were 
also examined.  The figure-ground asymmetry in lightness found for preference ratings (r = +.14) 
was also present in harmony ratings (r = +.13, p < .001), in that pairs with lighter figures on 
darker grounds were rated as more harmonious than pairs with darker figures on lighter grounds. 
However, the coolness asymmetry that was present in the preference ratings (r = +.13) failed to 
reach statistical significance in the harmony ratings (r = +.05, p > .05).  

Although there is a high correlation between pair preference and pair harmony in the data 
averaged over all participants (r = +.79), the same is not necessarily true for individual 
participants. Each individual’s degree of “preference-for-harmony” was computed as the 
correlation between his/her preference ratings and his/her harmony ratings over all 992 color 
pairs.  These correlations ranged from a high of 0.75, for the person who most preferred 
harmonious color combinations, to a low of -0.03, for the person who was most indifferent to 
harmonious color combinations.3 A variety of factors that might predict these individual 
differences in preference-for-harmony were examined. These included Big Five Inventory (or 
BFI), a 44 item personality inventory that measures five personality factors: Extraversion 
(talkative, assertive, active, energetic), Agreeableness (sympathetic, kind, appreciative, 
affectionate), Conscientiousness (organized, thorough, planful, efficient), Neuroticism (tense, 
anxious, nervous, moody), and Openness (wide interests, imaginative, intelligent, original) 
(John, Donahue, & Kentle, 1991; see John, Naumann, & Soto, 2008 for more detailed 
descriptions). Table 2 shows the correlations between participants’ scores on each of the BFI 
factors and their degree of preference for harmony. Although none of the correlations even 
approached statistical significance, there are trends in which participants who showed a high 
preference for harmony were less extraverted and more conscientious. 

Table 2. Correlations between preference-for-harmony measures and scores on 
the Big Five Inventory (BFI).  Preference-for-harmony is measured for each 
participant by the correlation between his/her pair preference ratings and pair 
harmony ratings for all pairwise combinations of the 32 chromatic BCP colors. 

BFI factor Pearson's r    p-value 

Extraversion -0.16 0.27 

Agreeableness -0.01 0.93 

Conscientiousness 0.13 0.38 

Neuroticism 0.06 0.68 

Openness -0.09 0.55 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 It may initially seem odd that the highest individual correlation (+.75) is lower than the 
correlation of the group averages (+.79), but this only indicates that the pattern of deviations 
across individuals is noisy and tends to cancel out, on average, across individuals. 

!
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When all five factors were tested in a linear regression, extraversion (2.7%, less 
extraverted, higher preference-for-harmony) and conscientiousness (an additional 2.3%, more 
conscientious, higher preference-for-harmony) were the factors that comprised the best fitting 
model (multiple-r = .22).  Given that our sample size (n=48) is very small for personality 
research, further data must be collected to determine whether preference-for-harmony is related 
to these (or other) personality factors.  

The only factor that was reliably related to preference-for-harmony was the amount of 
formal color training that participants reported on a scale in response to the question, “How 
much formal training have you had in color?” The formal color training scale ranged from 1 
(none at all) to 5 (very much), where 3 indicated training to the extent that traditional high school 
art offers. Figure 12 shows average preference-for-harmony correlations plotted as a function of 
formal color training.   

 
Figure 12. Preference-for-harmony as a function of formal color training.  Individual participants’ 
correlations between their own pair preference ratings and pair harmony ratings are plotted as a function of 
level of formal color training, ranging from 1=low to 5=high. The number of participants in each group is 
displayed below the corresponding data point. Error bars show the standard errors of the means (SEM). 

Somewhat surprisingly, preference-for-harmony was quadratically related to color 
training (F(1,47) = 7.58 , p < .01). People who reported a moderate amount of formal training in 
color were most likely to prefer harmonious pairs.  It is likely that everyone scoring 3 or above in 
color training was exposed to the kinds of rules that art theorists have formulated about color 
harmony and preference (e.g., Chevreul, 1839; Itten, 1961/1973).  Thus, they may well have 
been taught that harmonious combinations are preferable, and this pattern predominates among 
those with moderate color training.  However, our participants who had more formal training, 
which included professional artists, decorators, and graphic designers, may have discovered 
through experience how to go beyond those rules in creating effective color combinations even 
with disharmonious pairs.  Finally, those with essentially no formal training may simply have 
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evaluated how much they like the two component colors in the pair, without much regard for the 
degree of harmony in those combinations.  

Figure 13 shows average pair preference ratings for participants with low (n = 7), 
moderate (n = 9), and advanced (n = 6) degrees of formal color training, respectively. 
Participants in the low group scored a 1 on the formal training scale, in the moderate group 
scored a 3 and in the advanced group scored a 5, with those who scored a 2 or 4 being excluded 
to focus on the clearest cases. To help understand the effects of such training, each group’s data 
was analyzed separately using a regression model that included three factors: that group’s 
average preference rating for the ground color, their average preference for the figural color, and 
their average harmony ratings (Figure 14). (These three factors were chosen to emphasize the 
differences in pair preferences between participants with different levels of formal color training, 
rather than to optimize the total percent of variance explained.) 

Preference ratings in the moderate group decreased steadily as the hue similarity between 
the figure and ground color decreased (Figures 13 C-D). The results of the regression analysis 
showed that color harmony was indeed the most important factor for this group with only a small 
amount added by component color preference (see Formal Training group 3).  

The preference function for participants with no formal color training appears to be more 
strongly driven by ground color preference, with pairs containing cool grounds being most 
preferred, and those containing warm grounds being least preferred (Figures 13 A-B). The same 
three-factor regression model showed that component color preference component color 
preferences are relatively more important for those with little or no formal color training than 
those with moderate color training (compare Formal Training groups 1 and 3 in Figure 14).  

Interestingly, participants with advanced color training have generally flatter preference 
curves (Figure 13E-F), indicating that they are less influenced by hue difference (and harmony) 
between the figure and ground color than the other two groups. As shown in Figure 14 (Formal 
Training group 5), only a moderate amount of variance in their preferences can be explained by 
their harmony ratings, with small amount added from component color preference. Perhaps the 
group with the most formal color training, who tended to be color professionals of various sorts 
(painters, designers, decorators, etc.) have had so much experience in working with color 
combinations that they have become bored with harmonious combinations and have come to 
appreciate contrastive combinations, in which hue differences are greater.  Nevertheless, we see 
little evidence for Chevreul’s (1839) claim that highly contrastive colors are well liked even 
among this group of people highly trained in color theory. 
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Figure 13. Pair preference for those with (A-B) low, (C-D) moderate, and (E-F) advanced formal color 
training, as a function of figural hue (x-axis) and ground hue (separate lines) (A, C, E) and as a function of 
the hue difference (in the present BCP design) between the figure and ground (B, D, F). Error bars 
represent the standard errors of the means (SEM).  
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Figure 14. Bars show the percentages of variance explained by the harmony ratings (black stripe), ground 
color preference ratings (gray stripe) and figural color preference ratings (white stripe) for participants at 
each level of formal color training (1=none, 5=advanced). The order of the stripes represents the order in 
which each factor was entered into the regression model (bottom to top). 

One question that can be asked about these harmony ratings is whether the instructions 
we gave produced a “demand characteristic” such that participants inferred that they are 
“supposed” to give the pattern of data that we observed.  There are two noteworthy aspects of 
our instructions regarding color harmony. One is that they included the musical analogy, which 
explicitly told participants that their ratings of harmony did not need to conform to their ratings 
of preference. This analogy certainly does not dictate anything about how an individual “should” 
rate the harmony of a given color pair because the instructions specifically stated that “some 
[people] like Mozart and others like Stravinsky,” implying that harmony and preference ratings 
might be either quite similar or quite different.  The other noteworthy aspect of the instructions is 
that they stated that harmonious colors are ones that “go naturally together.”  Participants might 
have inferred from this that colors “should be” rated as harmonious to the extent that they are 
similar.  This issue is addressed in Experiment 3, in which we obtain explicit ratings of color 
similarity and contrast them with ratings of harmony.   

2.5. Experiment 3: Color Similarity and its Relation to Preference and Harmony  

The results of Experiment 2 provided evidence that color harmony is not only closely 
related to color preference, but also to color similarity: Harmonious colors are those with smaller 
hue differences, smaller differences in coolness, and lower total saturation, all of which imply 
that more harmonious colors are more similar to each other. Two further questions are now 
addressed. First, how does color harmony differ from color similarity, if at all? Second, which of 
these two measures of color relations provides better predictions of pair preferences?  If color 
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harmony is, in effect, simply another name for color similarity, then similarity ratings should be 
able to explain as much variance in pair preferences as harmony ratings do.  Moreover, there 
would be no need to consider the somewhat mysterious concept of color harmony if it predicts 
pair preference no better than the intuitive concept of color similarity.  Experiment 3, therefore, 
measures perceived color similarity of the same color pairs using the same BCP participants who 
previously made the preference and harmony ratings to examine more closely its relation to pair 
preference and pair harmony.   

2.5.1. Methods 
Participants.  The participants were the same 48 observers who completed Experiments 

1 and 2.   

Design and Displays.  The design was the same as that of Experiments 1 and 2, but the 
displays were slightly different.  The two colored regions were equal in size (100px x 100px) and 
positioned side by side, separated by a 20 px gap.  We did not use figure-ground displays for the 
similarity ratings because we wanted our observers to judge how similar the two component 
colors appeared to them without any spatial asymmetries in the displays (e.g., one color being 
inside another) or any complications arising from interactions along shared borders.  Since all 
pair-wise combinations of the colors were tested, each pair appeared twice, once when one color 
appeared on the left and the other on the right, and a second time in the reversed spatial 
configuration.  The left endpoint of the response scale was labeled “different” and the right 
endpoint was labeled “similar.” 

Procedure.  As in Experiments 1 and 2, participants were presented with each of the 992 
chromatic combinations one at a time in a random order.  Their task was to rate how similar each 
pair of colors was on a scale from “different” to “similar.” Participants completed this task in a 
separate session, at least one day after the harmony task had been completed. 

2.5.2. Results and Discussion 
Average color similarity ratings are plotted in Figure 15A as a function of figural hue and 

ground hue, averaged over figural cut and ground cut.  As is evident by inspection, the hue 
effects on color similarity ratings are quite similar to the corresponding hue effects on harmony 
ratings plotted in Figure 7A (r = +.83), but even more extreme.  They are also somewhat similar 
to the preference ratings plotted in Figure 2A (r = +.55).  Color similarity ratings were highly 
consistent across subjects, with an average correlation of +.75 between each subject’s own 
ratings and the entire group’s average ratings.  Notice that this consistency measure is 
substantially greater than the same measure for both the harmony ratings (r = +.51, t(47) = 8.84, 
p < .001) and the preference ratings (r = +.36, t(47) = 14.39, p < .001). 

The similarity data showed main effects of both left color hue (F(7,329) = 102.58, p < 
.001) and right color hue (F(7,329) = 96.22, p < .001), as well as a strong interaction between 
them (F(49,2303) = 174.77, p < .001).  Like preference and harmony ratings, similarity ratings 
were highest for each pair when the figure and ground hues were the same and decreased as the 
hue difference increased.  Figure 15B shows the same similarity data re-plotted as a function of 
the hue difference between the figure and ground colors.  As was the case for the preference and 
harmony ratings in Figures 2B and 7B, perceived similarity decreases monotonically as the hue 
difference between the two colors increases. The similarity functions do vary systematically over 
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hue, however, with similarity being greater for the cool hues (blues, cyans, and greens) than for 
the warm colors (yellows, oranges, and reds) (t(47) = 14.59, p < .001), with purples and 
chartreuses being generally intermediate.  

 
Figure 15. Similarity ratings for color pairs (A) as a function of the hue on the right of the monitor (x-axis) 
and hue on the left of the monitor (separate lines) and (B) as a function of the hue difference (in terms of 
steps in the present BCP design) between the right and left colors. Error bars represent the standard errors 
of the means (SEM). 

 
Figure 16. Similarity ratings of color pairs for each left region cut (separate lines), as a function of right 
region cut (x-axis). Data points for the saturated figure cut (open symbols) are plotted separately at the 
same x-axis point as the muted colors because they share similar lightness levels but slightly offset for 
clarity. Error bars represent the standard errors of the means (SEM). 

Similarity ratings were also analyzed in terms of cut (saturation/lightness level). As 
shown in Figure 16, there was a man effect of figure cut (F(3,141) = 52.13, p<.001) ground cut 
(F(3,141) = 66.56, p < .001), and a strong interaction between them (F(9,423) = 46.40, p<.001). 
Not surprisingly, pairs containing colors with more similar lightness values were rated as more 
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similar.  For example, dark colors were judged more similar to other dark colors than to muted 
colors (t(47) = 4.53, p <.002). This pattern of results is different from color harmony ratings 
(Figure 8), in which colors that generally contained lighter colors were more harmonious (e.g., 
dark colors were judged more harmonious with muted colors than with other dark colors (t(47) = 
4.26, p < .002).  

Figure 17 shows pairwise similarity ratings for left and right region cuts as a function of 
hue difference between the two colors. Similar to pair preference and harmony ratings, similarity 
ratings decreased monotonically as the hue difference between the component colors increased 
(∆1-4, all cuts: F(3,141) = 311.08, p < .001; ∆0-4, different cuts: F(4,188) = 429.59, p < .001), 
but with even more pronounced reductions than pair preference (∆1-4, all cuts: F(3,141) = 
175.62, p < .001; ∆0-4, different cuts: F(4,188) = 199.90, p < .001)  and harmony ratings (∆1-4, 
all cuts: 56.38, p < .001; ∆0-4, different cuts: F(4,188) = 50.75 p < .001). Further analyses of the 
interaction between figure and ground cut as a function of hue difference between the two 
regions can be found in Figure 18. 

!

Figure 17. Similarity ratings for the left (separate graphs) and right (separate lines) region cuts, as a 
function of the hue difference between them.   
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Figure 18. Comparisons between similarity ratings of color combinations with the same left region cut 
(separate quadrants in the figure) and different right region cuts. Icons adjacent each row and column 
represent the cuts of the pairs that were judged.  The lower triangle of the matrix shows the results of t-tests 
(df = 47, *p ≤ .002 (using the Bonferroni correction) and direction of the difference (e.g., in the “Saturated 
Left” quadrant, “S > D” indicates that saturated colors (left) are more similar to saturated colors (right) than 
to dark colors (right)).  The upper triangle of the matrix shows the means of the pairs that were compared. 
The means for comparisons with same-cut pairs (italicized text) include only hue-difference steps of 1-4 for 
both pairs. All other means include all hue-differences steps (0-4). Bold face text indicates differences were 
significant. 

When Munsell dimensions were used to predict color similarity ratings for the 992 color 
pairs, the best model showed that more similar colors were more similar in hue, cooler, more 
similar in value (lightness), and more similar in coolness, explaining 78% of the variance (see 
Figure 4). When all 10 factors were included, the full model explained 82.8% of the variance, but 
there was no clear “best” model among those that included more than four predictors.    

As noted previously, color similarity ratings are strongly correlated with harmony ratings 
(r = +.83).  To analyze the differences between them, we looked at the residuals after removing 
their mutual variation (69.6%) through regression. The only additional predictor entered into the 
regression equation for harmony was the absolute value of the difference in Munsell value 
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(+11.0%, with larger lightness differences being more harmonious) for a total of 80.6%, 
indicating that harmony ratings depended more strongly on lightness contrast (or less strongly on 
lightness similarity) than did similarity ratings. For similarity ratings, the absolute value of the 
difference in Munsell value explained an additional 12%, but unlike for harmony,  smaller 
lightness differences were rated as more similar. An additional 7.5% of the variance can be 
explained by hue difference (the number of Munsell hue steps between the two colors), 
explaining a total of 89.1% of the variance.  

The difference between perceived color similarity and color harmony, therefore, lies 
primarily in their relation to the lightness contrast of the two colors. Color similarity decreases as 
lightness contrast increases (r = -.23, p < .001, for the difference between the Munsell 
values/lightnesses of the two colors), whereas harmony increases as lightness contrast increases 
(r = +.10, p < .01, for the corresponding difference). This pattern shows that our observers were 
not judging similarity when making their harmony ratings. If they were, the obtained dissociation 
between harmony and similarity in the lightness dimension would not be present. It also shows 
that our observers were not responding to a demand characteristic in which they inferred that 
harmony was the same as similarity, for their ratings clearly contradict this equivalence in the 
lightness dimension. 

Thus far, it has been established that color similarity is strongly related to, but not the 
same as, color harmony and that color harmony is strongly related to, but not the same as, 
preference for color pairs.  This raises the important question of whether similarity is more useful 
in predicting pair preference than pair harmony is.  The clear answer is: No.  The raw correlation 
between average pair preference and average pair similarity (r = +.55) is substantially lower than 
the raw correlation between average pair preference and average pair harmony (r = +.79). A 
comparison between these correlations computed separately for each participant shows that the 
correlations between preference and harmony are reliably higher than those between preference 
and similarity (t(47) = 8.24, p < .001).  Indeed, if both average harmony ratings and average 
similarity ratings are included in the predictor variables of a regression analysis, similarity is 
never entered into the regression equation because it does not explain any additional variance in 
pair preference.  If harmony ratings are not included, the best fitting regression model with 
similarity ratings accounts for 71.3% of the variance, substantially less than the 80.8% accounted 
for when harmony ratings are included.   

Pair preference, harmony, and similarity are related to each other primarily because all of 
them increase as the hue similarity between the component colors increases: Color combinations 
with similar hues are generally more preferred, more harmonious, and more similar to each 
other.  They differ primarily in terms of lightness contrast: Pair preference ratings depend more 
on lightness contrast than do harmony ratings, and harmony ratings depend more on lightness 
contrast than do similarity ratings.   

2.6. Experiment 4: Preference for Figural Colors on Background Colors  

Thus far, the discussion has focused on preference and harmony judgments for color 
combinations as wholes and have found no evidence favoring art theoretic claims that color 
combinations with strong hue contrasts are either preferred or harmonious (e.g., Chevreul, 1839).  
One intriguing possibility is that the art theorists simply confused pair preference and pair 
harmony with what we are calling figural preference.  That is, people may find that figural colors 
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are preferable against contrastingly colored backgrounds even though they do not find such pairs 
of colors either harmonious or preferred as combinations.  This would be consistent with our 
previous finding that people prefer highly saturated colors to less saturated ones (Palmer & 
Schloss, 2010), because colors viewed against a background with a strongly contrasting hue are 
generally perceived as more saturated than when they are viewed against a background with a 
similar hue (e.g., Lotto & Purves, 2000). Experiment 4 investigates how background color 
influences observers’ preference for the figural color against which it was presented. A rating 
task, similar to Helson and Lansford’s (1970), was used to examine preferences for all 32 figural 
colors against all 32 background colors in an attempt to determine whether preferences for 
figural colors seen against different backgrounds vary in systematic ways that might explain art-
theoretic claims about the aesthetic virtues of contrastive color combinations (e.g., Chevreul’s 
so-called harmony of contrastive hues).   

2.6.1. Methods 
 

Participants.  The participants were the same 48 observers who completed Experiments 
1-3.  They performed the figural color-rating task on a different day that was later than the other 
three tasks. 

Design and Displays.  The eight colors from each of the four cuts were placed on each of 
the 32 background colors to make a total of 128 test displays, each containing all 8 hues from the 
same cut on a uniform colored background.  Each display contained the eight hues arranged to 
form a square with red in the top left corner, followed by orange, yellow, chartreuse, green, cyan, 
blue, and purple in a clockwise direction, as illustrated in Figure 1A.  Each colored square was 
100 x 100 px and was separated from the adjacent squares by 100 px.  In displays in which one 
of the squares was the same color as the background, that square was simply not visible in the 
display.  Below each square was an asterisk, which marked the location of the response text box 
for each color.  When participants typed in a rating, the asterisk below the colored square was 
replaced by the typed number.   

The displays in Experiment 4 (in which all eight colors from a given cut were presented 
simultaneously on a full-screen background color) were substantially different from the previous 
three experiments in which pairs were presented one at a time. We chose this configuration 
because we believed that it helped to emphasize that the task was to judge figural color 
preference independently of the background color rather than preference for the figure-ground 
combination as a whole.  

Procedure.  Each display contained the eight hues from one of the four cuts.  Participants 
were asked to rate how much they liked each figural color on a scale from 1 (lowest) to 9 
(highest) using the number keys at the top of the keyboard.  They could rate the colors in any 
order they wished, using the tab key to select which colored square to rate.  When a square was 
selected, the asterisk below it enlarged so that participants knew which square they were 
currently expected to rate.  If they desired, participants could change their ratings by tabbing 
back to a color square and typing a new rating.  In displays that contained a figural color that was 
identical to the ground there was a zero below the square instead of the asterisk, and that square 
was skipped when the tab key was pressed.    
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Participants were told that a given color could look different on different backgrounds, so 
they need not try to be consistent in their ratings across trials.  In addition, they were informed 
that they could give multiple colors the same rating within a given trial (i.e., if they hated all the 
colors they could give them all a rating of “1” and if they loved them all they could give them all 
a rating of “9.” Once participants had rated all the colors in a test display, they pressed the 
“Enter” key to go onto the next display.  The 128 displays were presented in a random order and 
were separated by a 500 ms inter-trial interval.   

2.6.2. Results and Discussion 
Figure 19A plots the preferences for figural hues on different colored backgrounds as a 

function of background hue.  This pattern is somewhat similar to the pair preferences presented 
in Figure 2A (r = +.54) but is also clearly quite different in that the ground color curves do not 
peak when the figural color has the same hue, as they do in Figure 2A. When figural preferences 
for each of the 32 figural colors (averaged over backgrounds) were compared with pair 
preferences for the same figural colors within figure-ground pairs (also averaged over 
backgrounds), there was a strong correlation (r = +.74), but it was not as strong as preferences 
for the same 32 figural colors when viewed against a neutral gray background (Palmer & 
Schloss, 2010) (r = +.87). Indeed, when these two correlations are calculated separately for each 
individual participant and compared statistically, correlations between figural color preference 
on differently colored backgrounds were reliably more closely related to figural color 
preferences on a neutral gray background than to pair preferences in which that color is figural 
(t(47) = 4.64, p < .001). This finding strongly suggests that the observers in Experiment 4 were 
indeed rating how much they preferred the figural colors in the present task rather than how 
much they liked the figure-ground pairs as wholes.  

There was a main effect of figural hue (F(7, 329) = 7.70, p < .001) and ground hue 
(F(7,329) = 8.47), and an interaction between them (F(49, 2303) = 4.58, p < .001) indicating that 
figural color preferences are indeed influenced by ground color. As is evident in Figure 19A, 
figural colors were more preferred on cooler backgrounds (t(47) = 5.27, p < .001).  This was 
especially true for the warm figural colors (red, orange, and yellow) against the cool 
backgrounds (blue, cyan, and green) compared with warm figural colors against warm 
backgrounds (t(47) = 6.03, p < .001).   

A regression model was used to predict preference for figural colors on different colored 
backgrounds using the same ten Munsell factors as predictors (see Experiments 1-3). The best 
model (Figure 4) showed that figural colors were more preferred when they contrasted with the 
background lightness/value, when they and the background were cooler, when they were more 
saturated and cooler than the background, and when they and the background were more 
saturated (58.4% of the variance explained). A total of 62.3% was explained when all 10 factors 
were included in the full model, but there was no clear “best” model containing more than 5 
factors. 

When single color preferences for the figural color and the ground color (each rated 
independently by the same observers against a neutral gray background color; see Palmer and 
Schloss, 2010), pair preferences, pair harmonies, and pair similarities were included in a 
regression model together with the Munsell factors, a total of 66.0% of the variance in figural 
preference against colored backgrounds was explained by color preference for the figural color 



!

  35 
!

on a gray background (30.3%), pair preference (18.7%), pair similarity (12.0%, larger 
differences being more preferred), and signed chroma/saturation difference (5.0%, more 
saturated figures on more desaturated grounds being preferred). The increase in figural color 
preference as perceived similarity decreases is the first evidence we have obtained that 
preference of any sort increases as hue contrast increases.  

 

 

Figure 19. (A) Preference ratings for each figural hue on each of the background hues as a function of 
figural hue and (B) residual figural color preference after accounting for figural preferences when rated on 
a neutral gray background (Palmer & Schloss, 2010) and pair preferences plotted as a function of figural 
hue (B). Error bars represent the standard errors of the means (SEM). 
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To look more closely at the effects of hue contrast, Figure 19B plots the residual figure 
preferences after removing the variance due to other sorts of preference: namely, preference for 
the figural color when viewed against a neutral gray background and preferences for pairs 
containing the relevant color as figure.  There is a clear interaction in the residuals in which 
warmer hues are preferred on cooler backgrounds and cooler hues are preferred on warmer 
backgrounds (F(49,2303) = 7.69, p  < .001).  This pattern is clearer for the “core” cool hues 
(green, cyan, and blue) and the “core” warm hues (red, orange, and yellow), than for the 
“border” hues (chartreuse and purple). Chartreuse followed a similar pattern to the warm hues, 
but purple peaked over chartreuse, which is the hue that contrasts most with purple.  

An analysis of the effects of cuts on figural color preference showed a main effect of 
figural cut (F(3, 141) =  8.16, p < .001), ground cut (F(3, 141) = 8.77, p < .001), and a strong 
interaction between them (F(9, 423) = 20.84, p < .001). As shown in Figure 20, saturated figures 
are generally most preferred, colors on saturated grounds are generally least preferred, light 
figures are more preferred on dark backgrounds, dark figures are more preferred on light 
backgrounds, and colors are moderately preferred on muted background.  

 
Figure 20. Preference for figural cuts (x-axis) on different background cuts (separate lines). Data points for 
the saturated figure cut (open symbols) are plotted separately at the same x-axis point as the muted colors 
because they share similar lightness levels, but they are slightly offset for clarity. Error bars represent the 
standard errors of the means (SEM). 

Supporting statistics of all pairwise comparisons can be found in Figure 21.  They 
provide further evidence for the importance of contrast in figural color preferences.  On light (L) 
grounds, the most contrastive dark (D) and saturated (S) figures are most preferred and the least 
contrastive L figures are least preferred.  Roughly the same is true for the D grounds, for which 
the most contrastive S and L figures are most preferred and the least contrastive D figures are 
least preferred.  The muted (M) grounds are more contrastive with the S, L, and D figures than 
with the M figures, and the data follow this pattern as well (although the difference between the 
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M and D figural colors was not significant after the Bonferroni correction was applied). The only 
results that appear to contradict this contrast pattern are those for the S grounds, where the S 
figures are always most preferred even though it seems that these figures should have the lowest 
contrast with the ground.  Notice, however, that highly saturated figures on highly saturated 
grounds will generally tend to be farther from each other in color space than the corresponding 
less saturated figures (L, M, and D figures) on highly saturated grounds.   Thus, it appears that 
most of the effects in figural color preferences can be attributed to some form of contrast, which 
generally enhances preference for the figural color. 

!

Figure 21. Comparisons between preference ratings for figural colors same background cut (separate 
quadrants) and different figure cuts. Icons adjacent to each row and column represent the cuts of the colors 
that were judged.  The lower triangle of each background-cut matrix shows the results of t-tests (df = 47, *p 
≤ .002 using the Bonferroni correction) and direction of the difference (e.g., “S > L” in the Saturated 
Ground quadrant indicates that saturated figures on saturated backgrounds were more preferable than light 
figures on saturated backgrounds). The upper triangle of the matrix shows the means of the pairs that were 
compared. The means for comparisons with same-cut pairs (italicized text) include only hue-difference 
steps of 1-4 for both pairs. All other means include all hue-differences steps (0-4). Bold face text indicates 
differences were significant. 
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Preference for figural colors, combined across hue and cut, increased as hue difference 
between the figure and background increased, which is the opposite of the pattern for pair 
preference, harmony, and similarity (Figure 22). Upon a closer examination, this pattern is 
primarily limited to color pairs with similar lightness levels, which suggests that hue contrast is 
more preferable only when there is minimal lightness contrast.  

 

Figure 22. Preference ratings for figural colors (separate lines) on colored backgrounds (separate graphs), 
as a function of hue difference between the figural and background colors.     

There was a 3-way interaction between figural cut, background cut, and hue difference 
(∆1-4, all cuts: F(27, 1269) = 8.68, p < .001; ∆0-4, different cuts: F(24,1128) = 10.36, p < .001) 
as well as 2-way interactions between background cut and hue difference (∆1-4, all cuts: F(9, 
423) = 8.30, p < .001; ∆0-4, different cuts: F(12,564) = 23.32, p < .001) and figural cut and hue 
difference (∆1-4, all cuts: F(9,423) = 3.75, p < .001; ∆0-4, different cuts: F(8,376) = 7.41, p < 
.001). For pairs with similar lightnesses – the four same-cut pairs (S-S, L-L, M-M and D-D) and 
the two S-M pairs – figural color preferences actually increased as hue difference increased (∆1-
4: F(3,141) = 22.32,  p < .001).  Pairs containing S figures on L backgrounds and L figures on S 
backgrounds also showed this pattern more weakly (∆1-4: F(3,141) = 7.20 p <.001), even though 
L colors were lighter than S colors.  
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The results of this experiment are roughly consistent with art theorists’ claim that hue 
contrast enhances people’s preference for colors in combinations that contain at least certain 
kinds of hue contrast (e.g., Chevreul, 1839; Munsell, 1921/1969).  The main problem with the art 
theoretic claims is that it is misattributed to increased harmony.  In fact, people do not like strong 
hue contrasts because such combinations are harmonious; they like colors against strongly 
contrastive backgrounds because they make the figural color itself look “better” (more preferred) 
than it does against a weakly contrastive background.  This argument is consistent with the fact 
that people generally prefer saturated colors over the other three less-saturated cuts when rated 
on a (zero saturation) neutral gray background (Palmer & Schloss, 2010): Saturated colors are 
more contrastive than other colors against medium gray. Reasons for why people might prefer 
colors against strongly contrastive backgrounds will be discussed in the General Discussion 
section where we address the general question of possible causes of the effects reported in this 
article.    

Thus, it appears that virtually all of the residual effects in these figural color preferences, 
after variations due to single and pair preferences have been removed, can be attributed to some 
form of contrast, all of which generally enhance preference for the figural color. In summary, the 
results show that figural color preference increases as hue similarity decreases, which is opposite 
the pattern for pair preference ratings, harmony ratings, and similarity ratings obtained in 
Experiments 1-3, respectively. They also show that pairs are most preferred on backgrounds of 
contrasting lightness. 

Results thus generally support Helson and Lansford’s (1970) claim that contrast is a 
highly influential factor on how much people like figural colors (which they call “object colors”) 
against a background color.  They propose that the reason contrast improves figural color 
preference could be ease of perception on a contrasting background.  This fits with the idea that 
preference in general is related to perceptual “fluency:” the hypothesis that people aesthetically 
prefer displays that are easier to perceive (e.g., Reber, Schwarz, & Winkielman, 2004). 

Finally, we performed a regression analysis to predict pair preference (Experiment 1) 
from figural color preference (Experiment 4), as well as pair harmony ratings (Experiment 2), 
similarity ratings (Experiment 3) and Munsell factors. The best-fitting model, which explained 
82.6% of the variance in pair preferences, included harmony (62.3%), figural color preference 
when rated on the correspondingly colored background (12.3%), and ground color preference on 
a neutral gray background (+8%). This amount is only slightly more than the model from 
Experiment 2 (80.8%) that included figural color preference on a neutral gray background and 
lightness contrast, both of which are encapsulated by figural color preference on different 
colored backgrounds.  Nevertheless, this model, which accounts for the most variance with the 
fewest variables, supports the hypothesis that contextual preference for the figural color (i.e., 
figural preference on a colored background) has an effect on pair preferences, even though it 
does not have an effect on pair harmony. 

2.7. General Discussion of Experiments 1-4 

The results of the preceding four experiments have demonstrated that there are distinct 
differences among three kinds of perceptual judgments of two-color figure-ground combinations: 
preference for the color pair, harmony of the color pair, and preference for figural colors against 
colored backgrounds.  Both pair preference and pair harmony vary primarily as a function of hue 
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similarity, such that pairs with similar hues are, on average, both more preferred and more 
harmonious.  Consistent with color theories in art (e.g., Chevreul’s (1839) “harmony of 
analogous colors”), ratings of color preference and harmony were highest for colors most similar 
in hue.  Inconsistent with such theories (e.g., Chevreul’s “harmony of contrastive colors”), 
however, no overall increase was observed in ratings of preference or harmony for 
complementary hues.   

Although preference and harmony are closely related to one another, preferred pairs 
differ from harmonious pairs in including preference for the component colors and a large 
lightness contrast component, whereas harmonious pairs are more similar in hue and lower in 
saturation.  Harmony and similarity ratings are also closely related to one another, but harmony 
ratings do not have the lightness similarity component that similarity ratings have.   

Finally, figural color preferences against different background colors are closely related 
to preference for the same figural colors when rated on a neutral gray background and preference 
for the combination of the figural color and background color.  Once those factors are accounted 
for, however, clear effects of both hue contrast and lightness contrast are revealed: Warmer 
figures are preferred on cooler backgrounds, cooler figures are preferred on warmer 
backgrounds, and figures are generally preferred on backgrounds of contrasting lightness.  These 
results show that Chevreul’s so-called “harmony of contrast,” at least in the hue dimension, 
actually applies to preferences for figural colors on different colored backgrounds rather than to 
pair preferences or pair harmonies. 

The present experiments were aimed primarily at establishing the nature of aesthetic 
preferences for color pairs and their relations to harmony, similarity, and figural preference of 
color pairs. From these data, we can infer little about the actual causes of pair preferences. Still, 
we can speculate about causes with varying degrees of confidence for several key aspects of our 
findings.  The primary factors that influence pair preferences appear to be preferences for single 
colors (of the individual figural color and/or ground color), color harmony of figure and ground, 
lightness contrast between figure and ground, and figural preference against a colored ground.  
Before closing, we will consider in turn what factors might underlie each of these factors. 

The data from Experiment 1 clearly show that people’s preferences for color pairs 
reliably depend on their preferences for the individual colors of which they are composed (e.g., 
see Figure 3).  Palmer and Schloss (2010) have reported results that strongly support an 
ecological valence theory (EVT) of single color preferences, positing that people like colors to 
the degree that they like correspondingly colored objects. For example, people generally like 
saturated blues and cyans because they like clear sky, clean water, swimming pools, and most 
other objects that characteristically are these colors.  They generally dislike dark oranges 
(browns) and dark yellows (olive-colors) because they dislike feces, rotting food, vomit, and 
many other (but not all other – consider chocolate and coffee) objects they associate with these 
colors.  Because one cannot make scientific generalizations about such observations based on 
just a few examples of desirable and undesirable colored objects, Palmer and Schloss devised a 
systematic procedure to test their theory.  

To obtain comprehensive lists of color-object associations, one group of participants 
provided verbal descriptions of all the objects they associated with each of the 32 BCP colors in 
a fixed time period. Another group then rated their affective valence for each verbally described 
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object  (i.e., how positive/negative they felt about “clear sky,” “feces,” etc.). A third group rated 
how well the colors of each verbally described object matched the BCP color(s) that had elicited 
it. The affective valence ratings for each described object were weighted (multiplied) by the 
relevant color-match ratings (higher match ratings produced higher weights) and then averaged 
for each of the 32 BCP colors to produce the weighted affective valence estimate (WAVE) for 
each color. The WAVE for a given color, therefore, was calculated as the average weighted 
valences of all objects associated with that color, which could range from very positive to very 
negative. For example, object associates for brown (BCP dark orange) included “chocolate,” 
which was very positive, “feces,” which was very negative, and a large number of other objects 
with intermediate valences, all of which averaged together gave a net negative WAVE for this 
color). Using this procedure for all 32 chromatic colors, Palmer and Schloss (2010) found a 
strong correlation between the WAVEs of the BCP 32 colors and people’s average preference 
ratings for the same 32 colors (r = +.89). This result shows that preference for a given color 
increases as the average weighted valence of all of the objects associated with that color 
increases.  

Because the same single color preferences appear in the regression models for the present 
pair preferences  (see also Figure 3A for pair preference ratings averaged over ground hue and 
figure hue versus Figure 3B for single color preferences), we assume that this component of the 
data from Experiment 1 is influenced by the same ecological valences.  Moreover, to the extent 
that certain color combinations are characteristic of entities with strong valences (e.g., red and 
green with Christmas, blue and yellow with a bright sun against a clear sky, and dark purple and 
dark green with bruised flesh), the same associative ecological valence principles suggest that 
color pairs may be more (or less) preferred than would otherwise be expected from the kind of 
colorimetric relations we have identified in this article (e.g., hue similarity and lightness 
contrast), depending on the valence of their ecological associations. Of course, one cannot 
simply point to cherry-picked examples of objects that are associated with color pairs to test for 
ecological effects on pair preferences. A comprehensive analysis of all objects (positive, 
negative, and everything in between) associated with each color pair would be necessary to test 
whether the average valence of objects associated with a given color pair is related to preference 
for that same pair.  

The lion’s share of the variance in pair preferences, however, is clearly due to abstract 
color relations: People prefer color pairs that have the same hue but differ in lightness and/or 
saturation.  Our measurements suggest that the best single relational variable in predicting pair 
preferences is perceived pair harmony, because average pair harmony ratings appear in all of the 
best-fitting regression models of average pair preference, accounting for 62% of the variance.  
What, then, might be the cause of the perception of color harmony?  Our instructions for rating 
harmony (aside from the musical analogy) asked observers to report “how well the colors go 
together,” and we presume that this is what they judged, to the best of their ability. Our current 
conjecture is that color harmony derives from the ecological co-occurrence statistics of color 
pairs within uniform connected (UC) regions of natural images. Palmer and Rock (1994) defined 
UC regions as connected areas within an image that are (relatively) homogeneous in terms of 
many variables, including those related to color.  We speculate that the color pairs judged to be 
most harmonious are those that are most likely to co-occur within UC regions. We are testing 
this hypothesis by examining ecological statistics in the Berkeley Segmentation Dataset (see 
Martin et al., 2001; http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/), which 
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contains 200 images that were hand-parsed into regions by human observers.  Preliminary results 
from analyses of the relations among within-region colors suggest that the primary chromatic 
attribute defining a UC region is hue similarity. This means that pairs of pixels that have the 
same hue (or very similar hues) are most likely to co-occur within UC regions and that within-
region variations in lightness and/or saturation are greater than variations in hue.   

A third factor that clearly contributes to pair preference in most of the best-fitting 
regression models is lightness contrast.  Harmony ratings do not depend strongly on lightness 
contrast, but pair preferences do, with more contrastive pairs being preferred. Why might this 
occur?  One possible explanation comes from the fluency theory of aesthetic preference (e.g., 
Reber et al., 2004).  The basic premise of fluency theory is that people prefer things that are easy 
to process perceptually.  Lightness contrast is one of the primary factors that supports this theory:  
People prefer images in which the contrast between figure and ground regions is high.  Fluency 
theory frames the relevance of lightness contrast to pair preference in terms of high-contrast 
figure-ground images being aesthetically pleasing to perceive, but one could also frame the same 
phenomenon in the opposite terms: Perhaps low-contrast figure-ground images are aesthetically 
displeasing. This description suggests a possibly different causal account in which isoluminance 
plays a dominant role: Perhaps people dislike low contrast figure-ground displays as the colors 
approach isoluminance, making the boundaries between them difficult to discriminate and 
having perceptually disturbing effects (e.g., Gregory, 1977).  We are currently investigating 
these possibilities, both of which may contain some truth. 

Finally, the results of Experiment 4 suggest that hue contrast increases preference for a 
figural color against a colored background. This effect may be caused by simultaneous color 
contrast (also known as induced color). The background (or surround) induces a hue shift in the 
figural color that is complementary to the background color (e.g., da Vinci, 1492; Chevreul, 
1839; Helmholtz, 1866/1925; Walraven, 1976; Shevell, 1978). This means that a gray figure on a 
blue background should appear somewhat yellowish (because yellow is the complement of blue), 
a yellow figure on a blue background should appear extra yellow (because the yellowness 
induced by the blue background increases the saturation of the yellow figure), and a blue figure 
on blue background should appear somewhat grayish (because the yellowness induced by the 
blue background partly cancels the blueness of the figure). If people generally like more 
saturated figural colors, as they apparently do (Palmer & Schloss, 2010), and if a contrasting 
background enhances the saturation of the figural color, then figural colors should be more 
preferred on backgrounds with strongly contrastive hues. The key question is whether these hue 
contrast effects will be eliminated if observers first adjust each color on each colored background 
to look identical to that same color on a neutral gray background.  If all of the figural preference 
effects found in Experiment 4 were to disappear with the appearance-matched figural colors, 
then simultaneous color contrast is surely their cause.  We are currently investigating this 
possibility.  

One concern about the generalizability of the current results is the degree to which 
preferences for color pairs in concentric-square, figure-ground displays will generalize to 
preferences for color pairs displayed in other spatial configurations. Preliminary data for color 
pairs displayed side-by-side with a gap between them suggest that pair preferences still generally 
increase as hue similarity between the component colors increases.  Naturally, certain kinds of 
spatial factors that produce semantic interpretations of the colored regions could produce fairly 
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pronounced effects on preferences, such as making an orange region carrot-shaped and a green 
region above it carrot-top-shaped.  Future work comparing, some of which is in Chapter 3 below, 
examines the influence of different geometric arrays is underway to test how the principles 
established in this chapter apply to color combinations in different spatial arrangements.    

 The second issue concerns how the present findings from two-color combinations might 
generalize to combinations of three-colors, four-colors, and beyond. The present data show that 
preferences for single component colors only weakly predict preference for color pairs, with the 
lion’s share of the variance attributable to pairwise color relations (e.g., harmony). Might the 
same problem arise when expanding the domain to three-color combinations: i.e., might single 
and pairwise preferences account for little of the variance, with the lion’s share now arising from 
three-way relations? Preliminary results on preference for color triples, however, suggest that 
preferences for all possible pairs within triples of colors predict much of the variance within 
preference for triples as a whole. We speculate, therefore, that once pairwise color preferences 
are known and understood, enough relational information is available to account for preferences 
in higher-order combinations.  

At the outset of this chapter it was proposed that much of the confusion in the literature 
on the aesthetics of color combinations was due to confusion among three distinct types of 
judgments: pair preference, pair harmony, and figural preference on different colored 
backgrounds. Strong empirical evidence has been shown that these three types of judgments are 
indeed different, in that they produce systematically different patterns of results. It has also been 
argued that these results and analyses clarify many of the confusions that have accumulated over 
the past century.  Moreover, it is expected that the new understanding achieved by making clear 
distinctions among these and related aspects of perceptual response will allow researchers to 
move beyond the foundational problems of how to define and measure preference and harmony 
properly to more advanced questions, such as why people prefer the combinations they do, both 
as individuals and as a group, and how color preferences might be influenced by the context 
and/or intended message of a visual display.  

 

3. The Role of Spatial Organization in Preference for Color Pairs 
 

When combining two or more colors in a visual display there are two primary factors to 
consider: which colors to use and how to arrange them spatially. In Chapter 2 we analyzed the 
first of these factors –  which colors people prefer – and found that, on average, they prefer pairs 
with cooler colors that are similar in hue, contrasting in lightness, and contain preferred 
individual colors. In Chapter 3, we investigate how the spatial organization of the two 
component colors influences people’s aesthetic preferences for pairs of colors. Granger (1952) 
went so far as to suggest that choices of the relative sizes of colored areas may be more 
important than the choices of colors themselves.  
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3.1. Introduction to Spatial Aspects of Color Pair Preference 

3.1.1. Color-Pair Preference Asymmetries 
To address the influence of spatial organization on preferences for color pairs, we tested 

for the existence of color-pair preference asymmetries that would occur if people systematically 
prefer a given color pair in one spatial configuration over the same colors in the same 
configuration, but with their spatial roles reversed.  

3.1.2. Previous Research on Spatial Aspects of Preference for Color Pairs 
In Chapter 2 we presented evidence of preference asymmetries for color pairs organized 

in a figure-ground arrangement consisting of a small square centered on a larger square. People 
preferred pairs with warmer figures on cooler grounds and lighter figures on darker grounds. 
More specifically, preference ratings for each of the 992 pair-wise combinations of the Berkeley 
Color Project (BCP) 32 chromatic colors were weakly, though significantly, correlated with the 
signed difference in coolness (r = .13) and lightness (r = -.14) between the ground and figure 
colors, with higher preference ratings for warmer, lighter figures on cooler, darker grounds. 

The preference asymmetries described in Chapter 2 have left numerous questions 
unanswered. First, it is unclear whether the correlations were weak because preference 
asymmetries are simply marginal effects or because the rating task used was not sensitive 
enough. To address this issue, we measured preferences for the same pairs, in a forced choice 
task in which the only difference between the two pairs in the comparison was the figure-ground 
assignment of the colors (Experiment 5). Second, it is unclear which spatial aspects of the figure-
ground pairs govern the preference asymmetries. The figural region differs from the ground in 
multiple ways. Not only is it more ‘figural’ or object-like, in terms of figure-ground organization 
(Rubin, 1921/1958), but it is also smaller than the ground and surrounded by the ground, both of 
which contribute to its figural status. In Experiments 6-7 we therefore isolated which spatial 
factors are govern these preference asymmetries.  

Bullough (1907) tested for such preference asymmetries based on lightness by presenting 
participants with two color pairs that only differed in their vertical arrangement. He found that 
participants preferred pairs in which the lower region was darker, which he attributed to color 
weight, as if people like darker, heavier regions to be lower because they provide more 
gravitational stability to the image.4   

Other previous research on spatial aspects of color combinations focused on how balance 
can be achieved by adjusting the relative area among colored regions. According to Munsell’s 
(1921/1969) principle of inverse ratios of area, color combinations are balanced or harmonious 
when “stronger” colors occupy less space than “weaker” colors. Accordingly, balance is 
achieved when the area times value (lightness) times chroma (saturation) of the component 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4!Although Bullough (1907) was adamantly opposed to statistical analysis of aesthetic judgments and reported only 
qualitative assessments of his data, a quantitative analysis of his data shows that the effects he reported were 
statistically significant. However, Bullough (1907) had an obvious confound in his test displays, because the color 
pairs that were consistent with his theory of color weight were always labeled “a” and those that were inconsistent 
were always labeled “b.” A response bias to report “a” would thus have spuriously led to data that he interpreted as 
supporting his hypothesis.!!
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colors is equivalent.  In addition to this relation in area, value, and chroma, Munsell strongly 
recommend using complementary hues in his space to achieve utmost balance in the sense that 
they would mix to produce neutral gray on a Maxwell disk. In Birren’s contribution to Munsell’s 
(1921/1969) A Grammar of Color, he recommended that warmer colors should have higher 
chroma (and smaller area) than cooler colors within a pair. Birren’s proposal is consistent with 
our previous finding that people preferred warmer figures (small squares) on cooler grounds 
(large squares) (Schloss & Palmer, 2011).  

Moon and Spencer (1944c) proposed a formula similar to Munsell’s, but claimed that 
colors were balanced when the product of the area times distance from the adaptation point 
products were equal. Their formula accounts for contrast with the background (or adaptation due 
to the color patches if they are sufficiently large), whereas Munsell’s formula is agnostic with 
respect to the background color. Moon and Spencer’s (1944c) and to Munsell’s (1921/1969) 
formulas are equivalent when the Munsell values of the colors are both 5, but otherwise the two 
formulas produce different area ratios for the same set of colors.  

Several studies have investigated which formula, Munsell’s or Moon and Spencer’s, was 
more valid empirically. Granger (1953) tested which formula better predicted participants 
preference for color pairs by having them adjust the relative area of the colored regions to 
produce the most “pleasing balance.” He found that Munsell’s rule predicted participants’ 
preferences better than Moon and Spencer’s formula.  Morriss and colleagues tested the validity 
of Munsell’s and Moon and Spencer’s formulas by asking participants to adjust the relative area 
of two adjacent colored regions until they appeared “balanced”  (Morriss, Dunlap, & Hammond, 
1982; Morriss & Dunlap, 1987; Morriss & Dunlap, 1988; Linnett, Morriss, Dunlap, & Fritchie, 
1991). In all of their studies they asked participants to ignore their color preferences when 
responding. Consistent with both Munsell’s and Moon and Spencer’s formulas, participants set 
the more saturated regions to be smaller when value was held roughly constant (Morriss, Dunlap, 
& Hammond, 1982; Linnett, Morriss, Dunlap, & Fritchie, 1991). Participants continued to set the 
higher chroma region as smaller, regardless of the hue difference between the component colors 
and background lightness (Morriss & Dunlap, 1988). When chroma was held constant and 
lightness varied, participants set regions with higher lightness contrast with the background to be 
smaller, which was consistent with Moon and Spencer’s (1944c) formula. 

In Itten’s (1961/1973) discussion of “contrast of extension,” defined as the relative area 
of color patches, he proposed that colors should be combined in a ratio that is reciprocal to their 
“brilliances” or “intensities.”  This rule is similar to Munsell’s (1921/1969), if one assumes the 
traditional use of the word “intensity,” but Itten was actually referring to Goethe’s (1810/2006) 
order of hue-based “light values,” where yellow (9) is most light, followed by orange (8), green 
(6) and red (6), blue (4), and violet (3). For Itten, if yellow is a “9” in light value and violet is a 
“3,” they should be combined in a ratio of 1:3. Interestingly, Goethe’s order of intensities follows 
the order of Munsell value (lightness) of the most saturated colors in each of the eight named 
hues in Munsell’s color space, and Itten uses highly saturated colors to illustrate his principle. 
Goethe’s order of light values also follows a rough ordering from warmness to coolness.  

3.2. Aim of Experiments 5-7: Understanding Color-Pair Preference Asymmetries 

In this chapter we analyze preference asymmetries in light of the aforementioned 
theories. Our analyses do not directly test their formulas because our particular aim is to predict 
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the strength of preference asymmetries in color pairs of fixed ratios rather than the relative area 
between two colored regions. Still, we use these rules to guide our understanding of the nature of 
preference asymmetries. We will also measure preference asymmetries in different spatial 
configurations to determine which spatial factors are most important in contributing to these 
effects, independent of relative areas.  

3.3. Experiment 5:  Asymmetries in Preference for Color Pairs 

In Experiment 5 we tested for possible asymmetries in preference for figure-ground pairs 
consisting of a small square centered within a larger square. Preferences would be asymmetric if, 
for a given pair of colors, observers reliably preferred one color as figure and the other as ground 
to the reversed figure-ground arrangement.  

3.3.1. Methods 
Participants. Participants were the same as those from Experiments 1-4.  

Design and Displays. As in Experiments 1-4, all pairwise combinations of the 32 
chromatic colors from the Berkeley Color Project were used (see Palmer and Schloss, 2010) to 
generate 992 color pairs.  

Each display contained two color pairs, one on the left and one on the right of the 
monitor. Each pair consisted of a small square figure (100 px x 100 px) centered on a large 
square ground (300px x 300 px), analogous to the pairs tested Experiments 1 and 2. The two 
pairs within a trial contained the same two colors but were reversed in figure-round arrangement: 
i.e., if the left pair contained a figure of Color A and a ground of Color B (denoted pair AB), the 
right pair had a figure of Color B on a ground of Color A (denoted pair BA). There were 992 
trials so that each pair of color-pair displays appeared twice with the spatial positions of the two 
displays reversed.  

Procedure. Participants were instructed to indicate which pair they liked better by 
pressing the left arrow key if they liked the left pair better, the right arrow key if they liked the 
right pair better, and the down arrow key if they liked both pairs equally.  Displays remained on 
the screen until participants responded, and trials were separated by a 500ms inter-trial interval.  

3.3.2. Results and Discussion 
Preferences were considered “asymmetric” if participants preferred color pair AB to 

color pair BA (or pair BA to pair AB) when the only difference between pair AB and BA was 
the figure-ground assignment of the component colors.  Figure 23 demonstrates the presence of 
preference asymmetries of hue in figure-ground pairs, averaged over saturation and lightness 
levels. Each subplot shows the data for all trials containing the hue indicated above it. The square 
data points represent the proportion of trials on which observers preferred the pairs containing 
the titled hue as ground color, circular data points represent the proportion of trials on which they 
preferred the pairs containing the titled hue as figure color, and the gray diamond data points 
represent the proportion of trials on which observers preferred neither pair. The three points 
located at each x-axis value within a subplot thus necessarily sum to 1. When the hue of the 
figure and ground are the same in these plots, the data points are solid to indicate this fact, they 
differ only in the lightness and/or saturation levels.  Because the data in Figure 23 are averaged 
over lightness and/or saturation levels, there is no distinction between these two cases, making 
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their choice probabilities necessarily the same. However, the proportion of trials on which they 
indicated lack of preference (gray diamonds) is free to vary.  Participants were more likely to 
choose neither pair when the two colors within the pairs were more similar to one another, as 
indicated by a reliable positive correlation (r=+.40 , p<.001) between the proportion of times 
participants chose neither pair on each of the 992 and the same participants’ similarity judgments 
of the two colors within each pair, as reported in Experiment 3.  This result suggests that 
participants simply responded “neither” when the choice was difficult. For this reason, all 
participants in the subsequent experiments were not given the “neither” option.   

 
Figure 23. Comparisons between the proportions of times each hue pair was chosen when presented in one 
figure-ground arrangement relative to the reversed figure-ground arrangement. Each hue sub-plot 
(indicated by subplot title) compares preference for pairs containing that hue as figure (circles) vs. that hue 
as ground (squares) when paired with each of the other hues (x-axis).  Gray diamonds show the proportion 
of times neither pair was chosen. Error bars represent the standard errors of the means (SEM).  

Close inspection of Figure 23 indicates a striking regularity in the results: participants 
showed preference asymmetries to the degree that the ground was more blue and the figure was 
more yellow.5  This pattern is most apparent in the Yellow and Blue subplots, where participants 
always preferred pairs containing yellow to have yellow in the figural region (see Yellow 
subplot) and pairs containing blue to have blue in the ground region (see Blue subplot). The same 
pattern holds for pairs that do not contain yellow or blue specifically, but still differ in the 
yellowness-blueness dimension, such as orange and cyan (orange figure on cyan ground 
preferred), and chartreuse and red (chartreuse figure on red ground preferred).  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5Mexican participants, tested at the University of Guadalajara, show similar yellowness-blueness 
preference asymmetries, which discounts the possibility that the effects reported here are simply 
due to Berkeley students’ higher preference for Berkeley’s primary color pair (gold-on-blue) to 
its secondary color pair (blue-on-gold) (Schloss, Poggesi, & Palmer, in press)).!
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To evaluate this blue-yellow asymmetry more quantitatively, Figure 24A plots the 
proportion of trials on which each of the 992 pairs was chosen as a function of the figure-ground 
difference in the yellowness-blueness of the colors.  The largest values on the x-axis thus 
corresponding to yellow figures on a blue background and the smallest values to blue figures on 
a yellow background. The amount of yellowness-blueness, redness-greenness, warmness-
coolness, lightness-darkness, and saturation for each color was determined by the same 
participants’ ratings in a previous session (see Palmer & Schloss, 2010), and were normed to 
range from -1 to 1.  

 
 

Figure 24. Comparisons between the proportions of times each pair was chosen (i.e., preference) as a 
function of the difference in (A) yellowness-blueness and (B) lightness-darkness difference between the 
figure and ground colors in the pair.  The colors of the data points represent the colors of the pairs that were 
judged. The solid black line is the best fitting line as determined by a linear regression equation.   

As Figure 24A indicates, there is a clear linear increase in the probability of choosing a 
given pair to a degree that its figural color is yellower and its ground color is bluer (r = +.66, p < 
.001).  Figure 24B shows a similar, but weaker, positive correlation between preference and the 
difference in lightness ratings, in which pairs with lighter figures were more preferred (r = +.48, 
p < .001). Corresponding comparisons showed preference for pairs with warmer figures on 
cooler grounds (r=+.39, p<.001), a fact that is not surprising given the high correlation between 
warmness-coolness ratings and yellowness-blueness ratings (r=+.73, p<.001).  There was also a 
very slight preference for pairs with desaturated figures on saturated grounds (r = -.09, p < .01), 
but no relation between preference and figure-ground differences in the redness-greenness of the 
colors (r=.01, p>.05). 

Palmer and Schloss (2010) found that the single color preferences of the same 
participants tested here were strongly related to the rated yellowness-blueness of the colors, with 
a general preference for bluer colors. It is therefore possible that participants like bluer regions to 
be ground simply because they like the more preferred color in the figure-ground display to be 
larger. Bullough (1907) also reported that participants often claimed that they chose pairs in 
which their more preferred color occupied more space. To test this hypothesis we conducted two 
logistic regression analyses. The first tested how well each participant’s component color 
preference accounted for the participant’s corresponding preference asymmetries. The second 
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analysis included that component color preference factor as well as a factor coding the figure-
ground yellowness-blueness difference. These two models were compared to see the one 
containing yellowness-blueness differences explained significantly more variance than the model 
including only component color preference. The preference asymmetry data (992 trials) were 
coded as 1 = left display chosen, 0 = right display chosen, and .5 = “neither” response. The 
component color preferences were obtained from the same participants’ single color 2AFC 
preference data in which they were presented with all pairs of the 32 single BCP chromatic 
colors and asked to indicate which one they preferred. The 2AFC data were used, rather than the 
same participants’ preference rating data (see Palmer & Schloss, 2010), so that direct 
comparisons could be drawn between pair preferences and which of the two colors in each pair 
was more preferred singly. These data were scored so that 1= left display chosen (corresponding 
to the ground color of the left pair in the pair task) and 0= right display chosen (corresponding to 
the figure color of the left pair in the pair task). The yellowness-blueness difference was 
calculated relative to the left pair. 

A chi square test was used to compare how well the model including component color 
preference alone fit the data versus the how well the model with both component color 
preference and figure-ground blueness difference fit the data.  For 33 out of 48 participants (p < 
.01 by a sign test), the model containing both component color preference and figure-ground 
blueness difference fit their data reliably better than the model with component color preference 
alone at the .05 level.  We conclude that the figure-ground yellowness-blueness effects in the 
preference asymmetries observed here are not simply a result of people preferring the larger 
(ground) color to be the more preferred color.  

To further understand the preference asymmetries we have observed, we conducted 
several linear regression analyses on the preference probabilities (averaged across participants) 
for each of the 992 pairs. We first entered the average 2AFC single color preference described 
above, which coded the proportion of times the ground color was preferred to the figure color in 
the pair on the left.  This factor reflects the difference in preference between the ground and 
figure color. This figure-ground difference in color preference explained a total of 29% of the 
variance, with higher preference for pairs in which the more preferred component color occupied 
the larger (ground) region. We then added the following five color appearance predictors: the 
corresponding figure-ground differences in rated yellowness-blueness, redness-greenness, 
warmness-coolness, lightness-darkness, and saturation in the left pair. Lightness difference 
explained an additional 22% of the variance (pairs with lighter figures being preferred), followed 
by yellowness-blueness explaining an additional 9% of the variance (pairs with yellower figures 
being preferred).  The total variance explained was thus 60% (multiple-r = .78.). The other 
factors did not account for significant amounts of additional variance. It is noteworthy that 
yellowness-blueness alone explains 40% of the variance, which is a large proportion of the 60% 
total, but the reason for this dominance appears to be that it conforms with several different 
biases: (a) the figure-ground difference in the component preferences (because bluish colors are 
generally preferred to yellowish ones), (b) the figure-ground difference in the lightness of the 
colors (because yellow is lighter than blue), and (c) the figure-ground difference in yellowness-
blueness that is independent of (a).  

In the following section we examine preference asymmetries in light of the formulations 
proposed by Munsell (1921/1969) and Itten (1961/1973).  Munsell’s rule hypothesizes that 
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people like “balanced” pairs in which the figural color (smaller region) has a higher value x 
chroma (VxC or lightness x saturation) product. The correlation between average preference 
asymmetry and the figure-ground difference in the VxC product for the left pairs was +.39, 
indicating that participants indeed tended to prefer pairs in which the figure had a higher VxC 
product than the ground. Although this correlation is in accord with Munsell’s prediction, the 
VxC product only explains 15% of the variance in preference asymmetries, which is actually less 
than a model that includes only figure-ground differences in Munsell value (29%), with lighter 
figures on darker grounds being preferred. When chroma was added into the model with Munsell 
value as a separate factor, it explained only 2% more variance than value alone, with more 
saturated figures on less saturated grounds being preferred. Munsell’s multiplicative formulation 
was thus less accurate than either an alternative based on value alone or an additive model based 
on the same two factors. 

Itten (1961/1973) claimed that the area of a region should be inversely proportional to its 
“intensity” as given by Goethe (1810/2006), where yellow (9) is most intense, followed by 
orange (8), green (6) and red (6), blue (4), and violet (3). Because no intensity value was 
provided for chartreuse or cyan, we interpolated values halfway between yellow and green for 
chartreuse (7.5) and halfway between green and blue for cyan (5). We then tried to predict 
preference asymmetries with the figure-ground difference in Goethe’s hue-based intensity 
dimension, where Itten’s ratios would predict stronger asymmetries for pairs that have larger 
differences in intensity. Indeed, 32% of the variance can be explained by this factor, for which 
people preferred more “intense” figures on less “intense” grounds. When the Munsell 
dimensions were also entered into this model, value difference explained another 13% (lighter 
figures on darker grounds being preferred), and chroma difference explained an additional 3% 
(more saturated figures on less saturated grounds), for a total of 48% of the variance explained.  

In Experiment 5 we thus found modest support for both Munsell’s (1921/1969) and 
Itten’s (1961/1973) proposals that lighter, yellower regions should occupy the smaller, figural 
region. However, in further testing Munsell’s rule we found that the figure-ground difference in 
Munsell value explained more variance (29%) than the figure-ground difference in value x 
chroma (15%). Further, in testing Itten’s rule, we found that perceived figure-ground difference 
in yellowness-blueness explained more variance (40%) than the corresponding difference in 
Goethe’s intensities (32%). We also showed that people tend to like the more preferred color to 
be the ground, and thus larger, than the less preferred color.  

These results indicate that preference asymmetries exist and that the two most potent 
predictors are figure-ground differences in yellowness-blueness (explaining 40% of the variance) 
and in perceived lightness-darkness (explaining an additional 9%).  We now know a good deal 
about what the color determinants of figure-ground asymmetries are, but have not yet identified 
which spatial factors are driving the effect. Does the relative area between the two regions 
modulate preference asymmetries, and if so, is retinal area or perceived area the dominant factor? 
And do the colors need to be in a figure-ground arrangement to elicit preference asymmetries?  
We address these questions in Experiments 6-7. 

3.4. Experiment 6: Effects of Relative Area on Preference Asymmetries  

In this experiment we investigate how varying the area of the figural region relative to a 
constant ground region modulates preference asymmetries. Such variations necessarily change 
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both the relative image-based area and the relative surface-based area of the two regions. Image-
based area refers to the size of the 2-D regions that are projected onto the retina. Surface-based 
area refers to the size of the regions that the observer perceives after the ground is amodally 
completed behind the figure  (see Palmer, 1999 for a discussion of image-based and surface 
based representations).  The figure’s image-based area will always be equivalent to its surface-
based area because it is entirely visible. However, ground is partly occluded by the figure, the 
ground’s image-based area and surface-based area will always be different. For example, the 
ground’s surface-based area is constant as the figural area increases, because it is completed 
behind the figure, but the ground’s image-based area decreases as the figural area increases, 
because the sum of the two is necessarily constant. Thus, when referring to ground area we will 
always be specific about the type (image-based or surface-based), but we will not have to make 
that distinction for figural area.  To ensure that the figural portion always appeared to be closer 
(rather than a farther region seen through a thin frame around it), the figural region was divided 
into numerous texture elements of the same size, all of which appeared to lie in front of the 
ground region (see Figure 25).  

 
Figure 25. Predicted preferences depending on whether the relative difference in (A) image-based area or 
(B) surface-based area is dominant in influencing preference asymmetries. The x-axis is the difference 
along a given dimension (e.g., yellowness-blueness, lightness-darkness) between the ground and figure 
colors. Separate lines represent the percentages of area the figure occupies relative to the image-based area 
of the ground.   

Different patterns of preference asymmetries should arise as the figural size increases, 
depending on whether image-based or surface-based area governs figure-ground preference 
asymmetries. As shown in Figure 25A, if image-based area dominates, there should be a cross-
over interaction, in which observers will prefer yellower, lighter figures on bluer, darker grounds 
when the figural area is small, show no preference asymmetry when the figural area is equated 
with physical/retinal area of the ground, and will prefer bluer, darker figures on yellower, lighter 
grounds when the figural area is large. If surface-based area dominates, such that the ground is 
always perceived as fully completed behind the figure, however, observers will always prefer 
yellower, lighter figures on bluer, darker grounds, because the ground will always be perceived 
as larger, even though the degree of preference asymmetry will decrease as the figural area 
becomes larger. The predictions in Figure 25 are drawn as linear functions because the data in 
Experiment 5 (see Figure 24) were fairly linear.  
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3.4.1. Methods 
Participants. The participants were 32 undergraduates at the University of California, 

Berkeley, who consented to participate in this study. All had normal color vision (screened using 
the Dvorine Pseudo-Isochromatic Plates). The Committee for the Protection of Human Subjects 
at the University of California, Berkeley, approved the experimental protocol.   

Design, Displays, and Procedure. All participants completed three tasks in the 
following order: pair preference, figural size estimation, single color preference.   The pair 
preference task was similar to that described in Experiment 5, but using three possible spatial 
configurations for the color pairs: one in which there were 40 texture squares (40% figure, 60% 
image-based ground), one with 50 squares (50% figure, 50% image-based ground) and one with 
60 squares (60% figure, 40% image-based ground). Each texture square was 30 px  x 30 px and 
the ground was always 300 px x 300 px.6 Each trial contained two figure-ground configurations, 
one on the left and one on the right and participants were instructed to indicate which one they 
preferred by pressing the left or right arrow keys. (The ”neither” response was not available in 
this experiment). The pairs within a trial were always spatially identical and only varied in 
figure-ground assignment of the colors. All pair-wise comparisons of the eight light (L) and eight 
muted (M) hues were tested to make a total of 240 color pairs. Colors for the saturated and dark 
cuts were omitted to reduce the number of trials to 720.  

In the figural size estimation task, participants were asked to estimate the percent of area 
occupied by the textural figure relative to the image-based area of the ground.  Only one figure-
ground configuration was presented in each trial, and it was located center of the screen. The 
four figure-ground configurations included the three just described for the pair preference task 
plus an additional configuration with even less texture (30% figure, 70% ground). Participants 
made their ratings along a continuous response line below the configuration that had tick marks 
delineating 10% intervals ranging from 0% to 100%.  They used a mouse to control the position 
of a vertical line mark on this response scale to “compare the total area of the foreground squares 
with the total amount of visible area of the background square.” Participants were also told: “Do 
not consider any background covered by the foreground squares when making your judgment.” 
Each texture configuration was presented in two color combinations: lighter gray texture squares 
(63.90 cd/m2) on a darker gray ground (12.34 cd/m2) and darker gray texture squares on a lighter 
gray ground. The background was the same neutral gray background (19.26 cd/ m2 as is all the 
other experiments). There were two replications of each condition to make a total of 16 trials.  

In the single color preferences task, participants were presented with each of 240 pair-
wise combinations of the 16 colors used in the pair preference task (left-right balanced) and 
indicated which they preferred by pressing a left or right response key. The colors were 
displayed as two squares (each 100 px x 100 px) on opposite sides of the screen’s vertical 
midline.   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 We varied the number of same-sized texture elements rather than varying the size of the same number of texture 
elements because prior research has shown that when a configuration is composed of many elements, keeping the 
size of the elements the same and varying their number produces a display that appears more similar perceptually 
(cf. Kimchi & Palmer, 1982, 1985). 
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All displays remained on the screen until participants made their response, and trials were 
separated by a 500ms inter-trial interval. Displays were rendered using Presentation 
(www.neurobs.com) and were presented on a 20-inch iMac computer (1280 x 768 resolution). 

3.4.2. Results and Discussion 
In all three texture proportion conditions, participants preferred displays in which the 

textured figural region was yellower than the ground, but the difference decreased with 
increasing numbers of texture elements and figural area (Figure 26A-C). There was a strong 
correlation between the proportion of times pairs were chosen as more preferred and the figure-
ground difference in yellowness-blueness for all textural conditions: 40% (r = .71, p < .001), 
50% (r = .67, p < .001), and 60% (r = .43, p < .001). There were similar but weaker correlations 
for the lightness-darkness dimension: 40% (r = .44, p < .001), 50% (r = .41, p < .001), and 60% 
(r = .06, p > .05). This pattern shows that surface-based area is more important than image-based 
area in determining which pair is preferred.  If image-based area were more important, the data 
in Figure 26C would be the vertical reflection of the data in Figure 26A because the amount of 
retinal area subsumed by the texture elements and backgrounds are opposites. Furthermore, the 
data in Figure 26B would approximate a flat horizontal line because there is no difference in 
image-based area between the texture and ground regions. Even when the yellower regions 
covered the majority of the retinal area in a figure-ground display, it was preferred to a figure-
ground reversed display as long as the bluer background was perceptually completed behind it.  

 

 
Figure 26. Separate plots show the proportion of times each pair was chosen as function of the yellowness-
blueness difference between the figure and ground for the (A) 40%, (B) 50%, and (C) 60% texture amounts 
and as a function of the lightness difference between the figure and ground for the (D) 40%, (E) 50%, and 
(F) 60% texture amounts. Data point colors symbolize the color of the pair that was judged. Dashed black 
lines at a proportion of .5 represent “chance.” Solid black lines represent the best fitting regression line for 
each texture size condition. 
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To illustrate and analyze (with inferential statistics) the regularity of the interaction 
between the figure-ground difference in yellowness-blueness and the relative size of the figural 
region, we binned the data shown in Figure 26A-C into four groups based on the magnitude of 
the difference in yellowness-blueness between the figure and ground and averaged over pairs 
within each bin. The bins were formed by averaging preference for all the pairs that lay between 
five equally spaced limits from -1 to 1. Figure 27A shows these binned data for the 40%, 50%, 
and 60% texture conditions for the yellowness-blueness dimension. Figure 27B shows the 
corresponding binned data for the lightness-darkness dimension. 

 

 
Figure 27. The proportion of trials on which pairs were chosen as a function of the binned difference in 
rated (A) yellowness-blueness and (B) rated lightness darkness between the ground and the figure. 

As shown in Figure 27A, there was a main effect of yellowness-blueness difference 
(F(3,93) = 10.19 p < .001), in which preference asymmetry magnitude increased with larger 
yellowness-blueness differences between the figure and ground. There was also an interaction 
between yellowness-blueness difference and figural area, in which the preference asymmetries 
were more extreme when the figural area was small and approached chance (0.5) as figural area 
approached the surface-based area of the ground  (F(6,186) = 6.33, p < .001). As shown in 
Figure 27B, there was also a similar relation between pair preference and lightness difference for 
figural and ground colors (F(6,186) = 2.87, p < .05), although there was no main effect of 
lightness difference (F(3,93) = 1.00, p>.05).  Note that these data are more ogival than those 
found in Experiment 5, and therefore deviate from the predictions shown in Figure 25, which 
were linear.   

One possible explanation for these results is that participants tend to underestimate the 
amount of image-based area covered by the figural texture relative to that covered by the 
background.  If so, they could always be choosing the pair in which the yellower texture 
elements appeared to occupy less image-based area than the ground. To test this possibility, we 
asked participants to “compare the total area of the foreground squares with the total amount of 
visible area of the background square.” They were also told: “Do not consider any background 
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covered by the foreground squares when making your judgment.” As shown in Figure 28, 
participants substantially over-estimated the relative amount of area occupied by the figure 
(F(1,31) = 114.17, p<.001), which discounts the possibility that participants chose pairs with 
yellower texture because they thought that the textured region had a smaller retinal area.  It 
should also be noted that the degree to which participants overestimate the figural area increases 
as figural area increases (F(3,93) = 12.01, p <.001) and that the overestimation is overall larger 
for lighter figures on darker grounds than the darker figures on lighter grounds (F(1,31)= 15.00, 
p < .01), which is not surprising given previous work on how lightness affects perceived size 
(i.e., irradiation (Münster, 1941), but see Békésy (1970)).  

 
Figure 28. The estimated perceived area (filled circles) occupied by the texture relative to the visible parts 
of the ground for the 30%, 40%, 50%, and 60% configurations as a function of the image-based area 
occupied by the texture. The dashed line represents actual percentages.   

Based on these data it is clear that participants prefer color combinations to the extent 
that the figural region is yellower and lighter and the ground is bluer and darker. It is also clear 
that the perceived surface-based area of the two regions, after amodal completion due to the 
depth information, is important.  Still, it is unclear whether figure-ground organization is 
required to obtain these preference asymmetries. In Experiment 7 we test whether the same 
effects exist when the component colors are not nested spatially and are separated by a gap in a 
side-by-side mosaic configuration that does not produce figure-ground organization.  

3.5. Experiment 7: Effects of Area for Separated Regions 

Thus far we have only measured preference asymmetries in displays with clear figure-
ground organization. In the present experiment we tested displays containing two rectangles 
separated by a gap so they appeared as a “mosaic” of regions in the same depth plane. If the 
same pattern of results emerges as reported in Experiments 5 and 6, then figure-ground 
organization and surroundedness are not prerequisites for preference asymmetries in color 
combination preferences. It turns out that the answer is different for yellowness-blueness than it 
is for lightness. We chose to use displays that were divided horizontally to determine whether 
participants preferred lower regions to be darker, as Bullough (1907) reported. 
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3.5.1. Methods 
Participants. The participants were 26 undergraduates at the University of California, 

Berkeley who consented to participate. All of them had normal color vision (screened using the 
Dvorine Pseudo-Isochromatic Plates). The Committee for the Protection of Human Subjects at 
the University of California, Berkeley, approved the experimental protocol.   

Design and Displays. There were two types of spatial configurations, one with a short 
top region (300 x 61 px) and tall bottom region (300 x 239 px) and the other with a short bottom 
region and a tall top region (see icons below the x-axis in Figure 29 for examples of short-
top/tall-bottom displays). The pairs within a trial were always spatially identical and only varied 
in top-bottom assignment of the colors.  All pair-wise comparisons of the eight light (L) and 
eight muted (M) colors were tested to make a total of 240 color pairs. The spatial arrangements 
were always the same within a trial. There were a total of 480 trials.  

Procedure. The procedure was the same as in Experiment 6, omitting the size estimation 
task.  

3.5.2. Results and Discussion 
Figure 29 shows the proportion of times each pair was chosen as a function of the 

difference in yellowness-blueness (Figure 29A) and lightness-darkness (Figure 29B) between the 
figural and ground colors. These data were averaged over spatial configuration (large-
bottom/small-top vs. small-bottom/large-top) because there were no effects of top vs. bottom for 
the yellowness-blueness difference (F(3,69) = 2.73, p>.05) or the binned lightness-darkness 
between the figure and ground colors (F<1).  

 
Figure 29. The proportion of times each pair was chosen as a function of the (A) yellow-blueness and (B) 
lightness-darkness difference between the small and large region. Data point colors represent the colors of 
the pairs that were judged. Dashed black lines at a proportion of .5 represent “chance.” Solid black lines 
represent the best fitting regression line for each texture size condition. 
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As in Experiments 5 and 6, there was a positive correlation between pair preference and 
the difference in yellowness-blueness between the small and large region (r = .59 p < .001), and 
there was a main effect of the binned yellowness-blueness difference in an ANOVA F(3,69) = 
6.64, p < .01). Unlike Experiments 5 and 6, there was a negative correlation between pair 
preference and the difference in lightness between the small and large region (r = -.42, p < .001), 
although the binned main effect was not significant (F(3,69) = 2.02, p > .05).  Effects of relative 
area thus exist even without the figure-ground structure of either perceived depth/occlusion or of 
image-based surroundedness, but they do not appear to be identical. Yellowness-blueness effects 
with mosaic displays were comparable with the figure-ground configurations studied in 
Experiments 5 and 6, but lightness-darkness effects with mosaic displays reversed, such that 
participants preferred mosaic pairs in which the lighter regions were larger (rather than smaller, 
as in figure-ground displays) than the darker regions. Although the cause of this reversal is 
unclear, some participants commented that the mosaic displays made them think of walls and 
trim and they preferred displays in which the “walls” were lighter than the “trim.”  

An analysis testing whether participants were more likely to choose the pair that 
contained the darker region on the bottom, as a theory based on gravitational stability due to  
“color weight” would predict (Bullough, 1907), showed that no such effect existed in our data (F 
< 1). This null result may have arisen because the two regions in the configurations were 
separated by a gap, however, as Bullough (1907) argued that that it was crucial that the two 
colored regions be perceived as part of the same “whole” to produce the color weight effect that 
he reported.  

3.6. General Discussion of Experiments 5-7 

The results of three experiments have clearly shown that spatial organization influences 
people’s preference for color combinations in systematic ways. People reliably prefer larger 
regions of color pairs to be bluer and smaller regions to be yellower, regardless of whether the 
regions are perceived as a figure in front of a ground (Experiments 5 and 6) or as adjacent figures 
in the same depth plane (Experiment 7).  The effective sizes of the regions in figure-ground 
displays are determined by their relative perceived areas after the ground has been completed 
behind the figure rather than by their retinal areas (Experiment 6).  Although we found 
preferences for the component colors have an effect on these preference asymmetries, the 
yellowness-blueness effects are not solely due to such preference effects because yellowness-
blueness accounts for additional variance after the effects of component color preference have 
been removed (Experiment 5). People also prefer color pairs with smaller regions to be lighter 
and larger regions to be darker when they are presented in a figure-ground configuration 
(Experiments 5 and 6), but they prefer smaller regions to be darker and larger regions to be 
lighter when they are presented in a mosaic configuration of coplanar rectangles (Experiment 7). 

Although the pattern of preferences over different spatial organizations is reasonably 
clear, the reasons for it are not. Here, we will consider two kinds of explanations that attempt to 
go beyond the colorimetric descriptions given above: namely, accounts based on phenomenology 
and ecology.  Phenomenological explanations appeal to non-colorimetric aspects the observer’s 
subjective experiences in assessing preferences for color pairs.  An example of a previous 
phenomenological hypothesis for pair preferences is Schloss and Palmer’s (2011) finding that 
people’s color harmony ratings explain 62% of the variance in their preferences for color pairs (r 
= .79), where color harmony was phenomenologically defined as the degree to which the colors 
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look like they “go together,” (using an analogy with the phenomenology of musical harmony).  It 
is not clear how this hypothesis would apply to the kinds of spatial asymmetry effects we report 
here, however, because “going together” seems primarily to be a symmetric relation.  A 
phenomenological hypothesis that does have an obvious application for the present results is 
based on Itten’s (1961/1973) introspective observation that in order to produce color pairs that 
are “balanced” in terms of “intensity,” high-intensity colors should be confined to a smaller area 
than lower intensity colors. This is similar to Munsell’s (1921/1969) idea that balance is 
achieved when “stronger” colors occupy less space than “weaker” colors.  Munsell’s 
phenomenological “strength” dimension, however, is defined as value x chroma whereas Itten’s 
phenomenological “brilliance” or “intensity” dimension is defined by Goethe’s “light values,” 
which are more strongly related to yellowness-blueness (r=.88) than to lightness-darkness (r= 
.72). Thus, the above results in terms of yellowness-blueness effects in all spatial configurations 
support for Itten’s hypothesis, where colors that feel more “intense” should be smaller in area to 
achieve balance.   

Given that experienced color intensity also varies strongly with the lightness of a colored 
region, the same limited-intensity hypothesis implies that people should like lighter regions to be 
smaller and darker regions to be larger.  This is true for the figure-ground displays (Experiments 
5 and 6), but not for the mosaic displays (Experiment 7). Indeed, the pattern reverses for mosaic 
displays, with lighter regions being preferred when they are larger rather than smaller.  It is not 
clear why this should be true from a phenomenological standpoint.  

A second kind of explanation is that strong ecological associations are responsible for the 
obtained spatial asymmetries in preference. Palmer and Schloss (2010) found clear support for an 
ecological account of individual color preferences: people like colors to the degree that they like 
the things that are those colors.  It is therefore reasonable to consider similar kinds of 
explanations for the present results.  Bullough (1907) considered ecological accounts of his result 
that people prefer darker regions to be lower, but abandoned it when he concluded that there 
were as many counter-examples as examples in support of his idea. Nevertheless, there are 
appealing ecological facts about prototypical figure-ground relations that may account for our 
results with figure-ground displays.  The suggestion is that people like to see smaller yellower 
regions surrounded by larger bluer regions as a generalization of the fact that most people like 
bright, sunny days, when they see the smaller yellow sun against the larger surrounding blue sky.  
Because the spatial reversal of this figure-ground combination (blue-on-yellow) has no particular 
ecological significance, the yellow-on-blue organization would be strongly preferred to its 
reversal on the basis of ecological factors.  The generalization gradient from this prototype might 
be strong enough that similar, though weaker, asymmetries holds for figures whose color is 
yellow-ish against grounds whose color is blue-ish.  Similar generalizations over spatial factors 
might also produce preferences for smaller yellower regions next to larger bluer regions in a 
mosaic configuration.  However, there is not yet empirical evidence to support both of these 
conjectures.  

Similarly, people may like to see a smaller brighter region surrounded by a larger darker 
region because they also like clear, moonlit nights, when they see the small, white moon against 
the large, dark sky.  This preference may be less robust than the yellowness-blueness effects 
because people probably are not as fond of clear, moonlit nights as they are of bright, sunny 
days.  Another consideration is that the opposite organization (small, dark regions surrounded by 
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large, light regions) also has ecological significance in text and images printed on a white page, 
although it is not so obvious whether the valences of these images are positive or negative. The 
further fact that this lighter-on-darker preference does not generalize to smaller light regions next 
to larger dark regions in a mosaic configuration – indeed, preferences reverse in this spatial 
structure – may be due to other ecological situations being more relevant to such organizations.  
As mentioned above, some participants spontaneously volunteered that the mosaic displays 
reminded them of a wall-and-trim situation, and they preferred the walls to be lighter.  

Although the ecological explanations just advanced are clearly ad hoc, they should not be 
taken lightly.  The extremely close link Palmer and Schloss (2010) found between average 
preferences for single colors and average ratings of the degree to which people like the 
ecological objects that characteristically have that color – a correlation of .89 using their 
procedures – obviously raises the possibility that similar effects may underlie preferences for 
color pairs, and it is quite possible that the spatial structure of such displays plays a significant 
role.  Although Schloss and Palmer (2011) were able to identify strong colorimetric determinants 
of preference for color pairs – e.g., that people tend to like color pairs to the extent that the two 
colors are the same or similar in hue but differ in lightness – does not preclude the possibility 
that ecological effects also influence people’s preferences. Indeed, they may be especially 
relevant to spatial asymmetries in figure-ground displays that may remind observers, consciously 
or nonconsciously, of particular ecological situations.  We are currently pursuing such 
conjectures in research designed to test them.  

 

4. General Conclusions 
 

The goal of the experiments described here was to understand people’s aesthetic 
responses to color pairs, both in terms of which colors people prefer in combination (Chapter 2) 
and how the spatial organization of the component colors influences pair preference (Chapter 3).  

On average, people prefer pairs with cooler colors that are similar in hue, contrasting in 
lightness, and contain preferred individual colors. Pair preference is highly related to pair 
harmony—how well the colors go together—however, pair preference relies more on component 
color preference and lightness contrast than harmony does. Preference for a color pair as a whole 
is different from preference for a single figural color, given its background color. Most notably, 
pair preference relies more on hue similarity, whereas figural colors are preferred on 
backgrounds that contrast in hue, especially when lightness contrast between the figure and 
ground color is minimal. Relating these results to color theory, Chevreul’s (1839) “harmony of 
analogous colors” applies to pair preferences and his “harmony of contrast” applies to preference 
for figural colors on contrasting backgrounds.  

Spatial organization plays a strong role in preference for color pairs in that people prefer 
yellower regions to be smaller in area than bluer regions. This effect it not solely for yellow and 
blue, but rather follows a generalization gradient away from yellow and blue so that preference 
asymmetry effects are larger for pairs that differ more on the yellowness-blueness dimension. 
Surface-based area (i.e., after amodal completion) was more influential than image-based area, 
such that people preferred figures to be yellower and grounds to be bluer even when the area of 
the figure was larger than the image-based area of the ground. However, figure-ground 
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organization was not required for such effects, given that the same pattern held when the two 
component regions were side-by-side and separated by a gap to form a mosaic configuration. For 
the lightness-darkness dimension, a similar but weaker pattern was present figure-ground 
preference asymmetries, but the pattern was reversed for mosaic configurations; participants 
preferred larger regions to be lighter than smaller regions.  

 Possible explanations for these results are discussed fully in the Results and Discussion 
sections of Chapters 2 and 3, but will be summarized here. Both phenomenological and 
ecological explanations have been suggested. For which colors people prefer in combination, a 
phenomenal explanation is that people prefer colors that feel like they “go well” together (are 
harmonious). But, what determines which colors go well together? One ecological explanation is 
that colors that “go well” together are colors that literally are found together in the world by co-
occurring within uniform connected (UC) regions of natural images (Palmer & Rock, 1994). A 
phenomenological explanation for color-pair preference asymmetries is that people prefer the 
more “intense” colors to occupy less space than less intense colors so that the color combination 
feels balanced (Itten, 1961/1973), and yellower colors feel more intense than bluer colors.  

 Another possible ecological explanation is that people prefer pairs to the degree that the 
colors remind them of positive things, in accord with Palmer and Schloss’ (2010) ecological 
valence theory (EVT). Pair preferences are related to single component color preference 
(Experiment 1), and preference for single colors is highly related to preference for 
correspondingly colored objects, so it follows that pair preferences might be related to 
preferences for correspondingly colored objects. This influence could operate on each individual 
color separately (e.g., yellow figures reminding people of sunflowers and blue grounds 
reminding them of the ocean) and/or on the color combination as a whole (e.g., yellow figures on 
blue grounds reminding people of the sun on a clear sky). Of course, according to the EVT, it is 
not just these specific color-object associations that should be influential, but rather experiences 
with all objects of a given color or color-pair influence preference for a color pair.  Following 
this logic, it is possible that people prefer color pairs that are congruent with ecological scenes, 
such as a yellow figure on a blue ground associated with the sun against the clear blue sky, rather 
than the less ecologically valid figure ground color-reversal. Future research will be aimed at 
testing ecological explanations for color pair preferences.  

Before closing, it is important to note that all of the principles presented in this 
dissertation are not intended to instruct artists and designers on how they should construct their 
work. As both Munsell (1921/1969) and Itten (1961/1973) explain, there are great paintings that 
do not adhere to such rules of balance because their imbalance has an exciting, provocative 
effect. Instead, these principles describe average preferences by average viewers of generic 
displays, and may be used as a default basis that can be manipulated to produce a provocative 
desired effect.  
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